

1 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

VALIDATED DESIGN

BUILDING A TENANT-AWARE AMD INSTINCTÊ
MI300X/MI325X/MI350X/MI355X CLUSTER FOR
AI WORKLOADS WITH AN INTEGRATED
SUPERMICRO SOLUTION
A Fully Validated Solution for Delivering an Optimized Architecture for
Providers and Customers Building an I nfrastructure with AMD Instinct Ê
MI300X-MI355X Accelerators

Executive Summary

Supermicro is a trusted technology partner at the forefront of the

data center industry. It offers optimal Total Cost of Ownership

(TCO) solutions across various domains, including Data Centers,

AI, and HPC applications. Additionally, Supermicro is a leading

supplier of systems for Generative AI, collaborating with partners

throughout the technology stack. As such, customers rely on

Supermicro for tested designs and solutions that simplify the

complexities of these deployments. While the components in the

AI cluster typically deliver very high performance, other

considerations extend beyond raw speeds and feeds to enable

optimal use of these resources in each solution.

TABLE OF CONTENTS
Executive Summary ... 1
Glossary of Terms .. 2

Foundations of AI Fabrics: RDMA, PCIe Switching, Ethernet, IP, and BGP

 ... 3
Validated Design Equipment and Configuration 9

Scaling out the Accelerators with an Optimized Ethernet Fabric –

Components and Configurations .. 10

Design of the Scale Unit - Scaling Out the Cluster 12
Supermicro Validated MI300X-MI355X Design: 4 Scale Units for 256

MI300X-MI355X... 17

Validated Design Architecture and Assumptions to Result in Detailed

Configurations ... 21

Performance of a Validated Design ... 22
Actual Performance Results .. 23

Storage Network Validated Design ... 24
How to Minimize Deployment Time – L12 Rack Pre-Built Solution from

Supermicro .. 26
Summary ... 27

Appendix A: Accelerator Fabric Detailed Leaf and Spine Configuration

Steps .. 28
Appendix B: Detail on how the Switch QoS will be setup 63

Appendix C: Connection maps to manage numbers of links 66
Appendix D: Server and RNIC Configuration Steps 67

Configuring RoCE Support .. 74
For More Information: ... 78

2 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

This paper will present a pre-validated GenAI solution that can be replicated, expanded, reduced, and operated optimally. By

this, we mean that the scale of this solution can be easily adjusted to accommodate various cluster sizes. The solution

discusses managing implementations of 16/32/64/128… up to a maximum of 1024 nodes with this validated design. This

design is a full-stack solution from Supermicro that can be deployed at a customer site or obtained as a pre-built solution

comprising a set of connected and configured elements, which are burned-in before shipping to the customer for rapid

deployment. We base this design on the AMD MI300X-MI355X solution, utilizing Supermicro-optimized servers, with all

network cabling and switching integrated and configured for optimal performance upon delivery. This document will address

numerous design and engineering data points to help the reader understand the key components.

Glossary of Terms

Accelerator The actual xPU performing calculations

SU Scale Unit

RCCL Radeon Collective Communications Library

Rail Optimized Locality relating to accelerator rank on a system

DLC Direct to chip Liquid Cooling

CDU Coolant Distribution Unit

SLURM Simple Linux Utility for Resource Management

NIC Network Interface Card

AOC Add On Card (Supermicro designation for NIC models)

RoCE RDMA over Converged Ethernet

RNIC RDMA-capable NIC

BIOS Basic Input/Output System

GRUB GNU Grand Unified Bootloader

PFC Per-priority Flow Control

ECN Explicit Congestion Notification

CNP Congestion Notification Packet

ARS Adaptive Routing and Switching

DLB Dynamic Load Balancing

UDP User Datagram Protocol

BGP Border Gateway Protocol

AS Autonomous System

PCIe Peripheral Component Interconnect Express

DSCP Differentiated Services Code Point

TC Traffic Class

PG Port Group

VRF Virtual Routing and Forwarding

EVPN Ethernet Virtual Private Network

VLAN Virtual Local Area Network

NVMe Non-Volatile Memory Express

ETS Enhanced Transmission Selection

MTBF Mean Time Between Failures

L12 Full Multi-Rack Level Solution Delivery

3 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Foundations of AI Fabrics: RDMA, PCIe Switching, Ethernet, IP, and BGP

Traffic Characteristics within AI Training that Affect Fabric Design

In a typical AI training job, many sparse matrix calculations are performed on groups of accelerators within a larger cluster.

This grouping shares a subset of the job (i.e., the dataset is parallelized, the model parameters are too large for any single

accelerator to handle, the parallelization occurs over time periods, and so on). During specific time periods, the accelerators

compute their subset of the job. Once they complete, all parallel members share results with each other (and must

acknowledge receipt of all peers' updated information – known as tail latency) before starting the next iteration of that job

step. This data sharing between computation iterations causes large “elephant flows” to occur among those accelerators

within that subset of the parallel working cluster (not every accelerator in the entire cluster). To minimize the time spent

waiting on network I/O to complete, these types of cluster fabrics require lossless, low-latency, and predictable performance.

Characteristics of Elephant Flows on the Fabric

Examining traffic flows and load balancing on a cluster, we identify methods to allocate flows to links on a per-flow basis to

prevent the risk of out-of-order delivery. Vendors introduce mechanisms to optimize this with per-packet balancing for

improved utilization, if resources are available on the adapters to handle any out-of-order issues and reassemble the data for

delivery to the application via RDMA. In this validated design, we aim to achieve a balance between per-packet and per-flow

methods. When considering the large flows between accelerators during data exchange among that subset of parallel

workers, we notice variability in the data transported within many smaller time windows within that elephant flow.

Remote Direct Memory Access (RDMA), and RDMA over Converged Ethernet Version 2

Figure 1 - Remote Direct Memory Access (RDMA)

Remote Direct Memory Access allows traffic to bypass the kernel. It eliminates the bottleneck of traversing PCIe bridges (if the

RNIC and GPU connect on different buses, devices, or functions - i.e., B:D:F, or transiting CPU and IOMMU complexes) and

sends/receives directly into the High Bandwidth Memory (HBM3 in our case) in the accelerator.

4 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Figure 2 - RoCE and RoCEv2 Packet Structure

The original RDMA over Converged Ethernet – RoCE – transported the InfiniBand higher-level headers in an Ethernet layer 2

transport. To expand the scale and traffic engineering options, the industry went towards RoCE version 2 – RoCEv2 – to allow

the encapsulation of those headers in a UDP/IP packet using a well-defined UDP port number of 4791.

Lossless Behavior, Congestion Avoidance, & Path Segmentation

The concepts of enabling lossless behavior and avoiding congestion on Ethernet involve a more extended discussion and

exceed the scope of this document. To help the reader grasp some key points throughout this document, we will discuss

several fundamental technology enablers essential for achieving lossless, low-latency, congestion-aware, and avoidance

technology, which must be present in today’s Ethernet fabrics.

Figure 3 - Per-Priority Flow Control via Pause Frames Figure 4 - Explicit Congestion Notification via CNP

5 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Several core individual enablers exist to meet these goals, including Per-Priority Flow Control (PFC), as shown in Figure 3,

which allows traffic to be paused by class of service. Another key aspect of managing congestion to ensure lossless behavior is

depicted in Figure 4, where an Explicit Congestion Notification (ECN) is signaled by setting a Congestion Experienced (CE)

value in the DSCP portion of the IP header on these intermediate switches. This setting enables the receiver to inform the

sender to slow down, preventing traffic loss.

This is further extended with optimized buffering within the switch itself, traffic classification and handling methods to

properly queue and schedule traffic, and present proper congestion avoidance mechanisms.

Figure 5 - View of Buffering, Classification, Queueing, and Scheduling in SSE -T8164S

The mechanisms to monitor, detect, and signal all of this are built into modern switching silicon and are already present in a

RoCEv2 aware network fabric. As we delve into the precise element configurations for these elements, you can refer to a

general representation for the shared buffering on the switch silicon.

Dynamic Load Balancing (DLB)

If we examine the flow as a whole, we see a distribution of traffic over a relatively long period at a high data rate. When we

zoom in, there are busy transport periods alongside gaps in time between them. Traditional ECMP only uses hashing load

mechanisms over multiple paths between endpoints by applying a “5-tuple” of header fields to select a path, which is

optimized for the power of 2 link counts, and statically maps the entire flow for its entire duration to a single member link in a

set of links. This can result in some links being congested while others are relatively lightly loaded.

The hardware in this solution extends significantly by measuring recent traffic trends and future patterns through the depth of

queued traffic. This allows for the dynamic selection of ideal links to optimize flows at the overall flow level, while also

accounting for individual packets to prevent out-of-order delivery risks to the destination. Achieving this requires analyzing

the timing of end-to-end flows and identifying gaps within a given flow, enabling the movement of “flowlets” to dynamically

6 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

link members with lighter loads. This approach is known as Dynamic Load Balancing (In SONiC UI, it will refer to Adaptive

Routing and Switching) and is deployed in the underlying Tomahawk silicon found in the Ethernet switches of this design.

These methods monitor congestion on specific links and serve as inputs to other protocols, controlling traffic on alternative

links for optimal path segmentation and load balancing without necessitating more resource-intensive adapters on the hosts

in the solutions.

Using Border Gateway Protocol (BGP) and Adaptive Routing and Switching (ARS) On the Fabric

Ethernet has employed Layer 2 mechanisms throughout its history (Spanning Tree and other more modern methods) to

ensure a loop-free path in the fabric for hosts to communicate. When a link or node fails, the directly connected device

removes entries from the MAC tables associated with the failed pathway. Traditionally, timers needed to expire for elements in

the fabric to seek alternate paths (Static Routing). In addition to link or device failures, congestion scenarios were generally

not addressed until PFC, ETS, DCQCN with ECN, WRED, and others on the Ethernet fabric were introduced. Many end users

now utilize approaches such as BGP routing and the adaptive routing introduced with DLB to enhance recovery from both link

and node failures, while effectively adapting to congested links. Users apply these and other techniques within the data center

to implement more active adjustments to the fabric. These mechanisms are highly effective at tracking and adjusting traffic

patterns and re-establishing pathways without human intervention. Figure 6 below illustrates an example of the topology

(from a public paper by Facebook) of an ideal BGP deployment for the scale and topology we will use. In this scenario, the leaf

nodes advertise the reachability of the connected systems to the spines (and other leaf nodes also) so that effective balancing

can occur when combined with information about link utilization and other metrics. With the EVPN type of BGP, we can

interconnect multiple leaf-spine fabrics to extend the size of the clusters and allow direct connectivity between nodes as

needed with Ethernet Spine and/or Super Spine Plane designs.

Figure 6 - BGP example from Meta for Ethernet Leaf -Spine architecture for maximum availability and traffic
balancing

7 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Hosting multiple lines of business or customers on a virtualized common fabric for new usage models

One extension we see increasingly deployed is for providers to offer accelerator services to multiple entities, internal and

external, to a company. Due to the perception of security isolation, early clusters were often built on a per-customer basis and

were fully dedicated to that specific business need. Over time, it has become evident that a layer of virtualization is required to

support multiple tenants (i.e., in cases where one tenant stops using services, goes out of business, or alters their resource

needs) in a dynamic manner, while ensuring tenant isolation and full performance that matches that of a completely

dedicated cluster. Many providers of accelerator services are grappling with how to offer services with minimized service

length obligations and the fastest time to bring their customers online as key business differentiators. The critical factor here

is achieving a monetary break-even point (and profit beyond that) relative to the cost of dedicated clusters for each tenant

under what terms. Much like the rapid growth of cloud computing offerings surpassing Infrastructure as a Service (IaaS) by

utilizing virtualization and secure segmentation for compute, storage, network, security, and other components, a similar

maturity in virtualization and secure segmentation for accelerator offerings needs to develop and is included natively in this

validated design.

To that end, designs like the one shown in Figure 7 below are utilized to keep resources segmented even when deployed on a

common accelerator utility base. Ethernet and IP offer built-in mechanisms that are widely used in industry to achieve these

goals and have often been deployed in large enterprises and cloud solutions. This validated design document includes the

topology to support this, along with some example schemas that can be deployed in real-world clusters today. Multiple

methods exist to share individual accelerators among tenant customers via host virtualization and other means. Still, for this

design and the scale of deployments we are exposed to, having granularity at the node level is most common, and this

solution will assume that level of granularity. If the provider builds capacity ahead of demand trends, they can offer some

portion (or all, if they buffer enough) on a very short lead time compared to the competition.

Figure 7 - BGP Sample Multi -Tenant Segmentation

8 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Managing Incremental Growth to the Accelerator Cluster

Collaborating on the previous discussion about building a shared cluster utility, which facilitates rapid onboarding,

offboarding, and adaptive business models for customers, there is often a goal of establishing just-in-time capacity or a

limited set of reserved resource buffers. As services are consumed, the buffer is depleted, and providers can replenish it to stay

ahead of demand. One way to scale is by replicating the dedicated clusters mentioned earlier; however, allowing tenants to

scale clusters without the limitations imposed by inter-cluster boundaries necessitates the creation of a consolidated set of

new resources to support seamless tenant growth. To achieve scalability, we must incorporate more Scale Units (SUs) with

nodes and their connected leaves. We then require a method to distribute traffic evenly across the existing and newly added

spines in the design. If we “swing” some of the leaf uplinks from certain spines to the new spines, we may encounter

challenges in establishing new subnets, configuring routing, load balancing, and other issues. A key principle of this validated

solution is to utilize “BGP unnumbered” links, which eliminates the need for manual adjustments to any port IP or routing

information. These link movements do not require taking down the clusters; however, the bandwidth between the SUs would

be halved when reallocating a portion of those links to the new spines, as depicted in the red links in Figure 8 below. This

process can be performed during periods of low cluster usage (to minimize the impact of reduced bandwidth during

expansion) as often as necessary. Tools from Supermicro can assist engineering teams in creating detailed workflows to

simplify this growth.

Figure 8 - Doubling the solution cluster to a 64 -node example

9 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Validated Design Equipment and Configuration

MI325X Server Utilized in a Validated Design

Figure 9 - Supermicro AS -8126GS -TNMR

Supermicro offers various server options compatible with many types of market accelerators, with Figure 9 above displaying

our air-cooled 8 AMD MI325X solution. One key upfront design requirement for these servers is to facilitate optimized RDMA

traffic with minimal distance, latency, and silicon between the RNIC and the accelerator. Below is a block diagram of the

system, presented to outline some key performance considerations that occur well before traffic enters the scale-out fabric.

Figure 10 - Block Diagram of AS -8126GS -TNMR

10 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Figure 10 illustrates the direct connections on dedicated PCIe switches, ensuring that RDMA traffic is localized for each

accelerator. This DMA is also present from the accelerators to the local NVMe on the PLX switch for scratch drive usage,

allowing data transfers without going through the CPUs. The NIC kits displayed support for 10/25GE links to external storage

devices. Our validated design specifies 200GE storage access for each CPU to its connected accelerators, which minimizes

inter-CPU transfers. Additionally, in-band networks generally permit firewalled internet access for tasks such as Linux package

operations, driver updates, tenant access, etc. Notably, the 1GE copper BMC access is not shown in the above diagram.

MI300X-MI355X Internal Fabric Basic View

Figure 11 - MI300X -MI355X Infinity Fabric

Figure 11 above gives a simple view of the internal links and the MI300X-MI355X OAM. All accelerators are directly meshed for

optimal performance.

Scaling out the Accelerators with an Optimized Ethernet Fabric – Components and Configurations

AOC-S400G-B1C RDMA Ethernet NIC for RoCEv2 Fabrics

Figure 12 - Supermicro AOC -S400G -B1C RNIC

11 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Supermicro develops the RDMA NIC (or RNIC here) based on Broadcom Thor2 (BCM957608) silicon. This PCIe Gen5 x16 adapter

(standup PCIe in this SVD, but an AIOM for OCP Mezzanine is also offered) is plugged into eight LP slots on the server above.

These then provide a direct set of 16 lanes of PCIe Gen5 for each accelerator.

SSE-T8164 Ethernet Switch

Supermicro's designs for AI networks are consistent across many of our partner accelerator solution vendors. We design,

build, and market multiple 400GE and 800GE switches to support these designs. The foundational technical software features

and functionality vary among different network vendor solutions; however, Supermicro employs the industry-standard

Software for Open Networking in the Cloud (SONiC). All the Ethernet features and functionalities referenced in this paper are

included in SONiC. To become more familiar with SONiC, we encourage utilizing tutorials and deploying a virtual switch

environment. This document provides an optimized SONiC configuration for our example cluster. Increasing numbers of

customers and partners are deploying Supermicro switches due to the short lead times, the desire for a fully validated

solution rack from fewer component vendors, and the strength in all things AI we offer. We will provide a very brief overview

below:

Figure 13 - Supermicro SSE -T8164 Ethernet Switch

The SMC SSE-T8164 Ethernet switch serves as both the leaf and spine in our AI network cluster design. In this design,

Supermicro will utilize direct 800G presented as 2x400GE links between all elements via 400GE breakouts for connecting to the

RNICs on our MI300X-MI355X systems. Supermicro has similar designs for other accelerator offerings and a roadmap for

regular updates to this and different designs. Please contact your Supermicro sales team to learn more. Each AMD MI300X-

MI355X connects to a 400G NIC interface on the fabric.

12 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Design of the Scale Unit - Scaling Out the Cluster

All Direct Attached Copper Scale Unit Design

These designs are based on a fixed infrastructure unit that can scale out to accommodate a wide range of cluster sizes. The

leaf devices are positioned in the middle of one of the two racks for this validated design of an air-cooled 2-rack SU. If DLC is

an option, we can reduce the footprint to the center of the single rack that comprises this SU. Within this cluster are eight

systems, with each rack having a maximum estimated power of approximately 80kW for our MI300X-MI355X in the 4U server

design. The rationale for the placement is to optimize the connectivity for copper connections while primarily reserving the

more expensive fiber connections for the leaf-spine connections. Figure 16 below illustrates the air-cooled version of the SU.

The Switch and RNIC depicted below feature an enhanced SERDES, allowing a Direct Attached Copper (DAC) solution up to 4

meters in length. However, an important point to note is that for optimal performance, Supermicro recommends using the

inner half of the OSFP ports to connect to the RNICs on the systems and the outer ports for the spines.

Figure 14 - Common DAC and Fiber leaf to RNIC Links for East -West Traffic

13 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Figure 15 - Common DAC and Fiber Leaf to RNIC Links for North -South Storage Traffic

There are a few reasons to prefer passive copper for intra-SU links in this design, including:

¶ Cost (Order of magnitude saved per link)

¶ Availability (500x increase in MTBF)

¶ Power (0.2W per link vs. typical 14-16W per optical link)

Figure 16 - Supermicro Air Cooled AI SU with MI300X -MI355X Servers and Accelerator Fabric Switches

14 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Figure 17 below illustrates the same SU design, but it becomes denser by implementing Direct Liquid Cooling for 8 hosts

within a single rack with a CDU. The core system design now requires only 4RU to accommodate 8 MI300X-MI355X

Accelerators, while consistently performing alongside the air-cooled version of this SU.

Figure 17 - Supermicro DLC AI SU with MI300X -MI355X Servers and Accelerator Fabric Switches

The connections between the leaf and the eight systems comprise eight sets of OSFP 800G in 2x400G linked to a pair of

QSFP112 400G on the NIC. The leaf-spine connections feature OSFP 800G each, as illustrated in Figure 18 below. To scale out

the number of systems in the cluster (the validated design depicted is a 32-system cluster for a 256 Accelerator cluster), we

need to increase the spine count and add more SU’s.

Figure 18 - System to Leaf Links

15 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Resource Management and Adding Locality into Work Placement (SLURM and Topology Optimization
Including Concept of Rails)

As Figure 18 illustrates, all accelerators within the systems of a single SU connect to a single leaf. Availability considerations

are managed at the resource manager layer, where job steps are checkpointed. If any accelerator or node fails, the workload is

distributed among the surviving accelerators to resume from the last checkpoint. Consequently, the fabric has no inherent

node-level redundancy concept, as each accelerator is linked to a single RNIC. This feature results in the optimal design of one

leaf supporting eight systems in this configuration, utilizing a short copper cable.

One key consideration, however, is that if the resource manager controlling the job execution environment is unaware of the

fabric, only two levels of adjacency are available. Suppose the job or step runs on a parallel set of accelerators lower than the

count on a given system (eight accelerators in this solution). In that case, all collective communications are local to a single

node, and traffic never needs to leave that node. If the resource manager utilizes more accelerators, which are very common

in today’s models, the only other option would be to use the east-west (or back-end) fabric. The issue is that this fabric may

have a single silicon hop, three hops (leaf-spine-leaf), five hops (leaf-spine-superspine-spine-leaf), or even more, depending on

whether any of the switches are modular chassis, which typically have multiple hops within a single node. This leads to the

potential for significant disparities in latencies for transporting collective communications, causing these accelerators to wait

for a final data send (tail latency) to ensure all workers are in sync before proceeding to the next computation iteration.

Various customers utilize custom and open-source tools to provide a level of locality and segmentation to minimize this issue.

Toolsets like the Simple Linux Utility for Resource Management (SLURM) are deployed in approximately 50% of today's

supercomputer installations, offering various methods to achieve this outcome. For this discussion, we will focus solely on

SLURM due to its open nature in describing the methods. One way to optimize flows is by using the immutable position of the

accelerator within a given system (known as that accelerator's rank) and designing the fabric so that all ranks within a Scale

Unit (SU) connect to the same leaf. In this design, we will utilize a system of 64 accelerators, tightly controlling latency to

achieve optimized performance with more than 8 accelerators while reducing variability across the entire cluster. This method

of utilizing a rank is termed “rail-optimized,” where the set of local system ranks collectively form a rail (i.e., all 64 nodes

ranked 1 connect to a leaf for rail 1). These rails then merge into the spine tier for all accelerators to communicate together;

SLURM ensures that workloads requiring fewer than 64 parallel members reside on that specific rail, keeping the rest of the

fabric free of that traffic. For users, there are command line arguments like “--gres=gpu:1” and “--

nodelist=/pathtofile/su1.nodelist” included in the sbatch commands to specify that rail within a particular SU.

Alternatives to Optimize Resource Management while Optimizing Connectivity

In these designs, however, having many nodes reach common leafs leads to lengthy cable runs, implying a need for fiber

connections as copper often becomes cost-prohibitive. In this validated design, we not only utilize copper for the many

advantages mentioned earlier in this document, but also localize a set of nodes and their accelerators into a group based not

on the rank of the accelerator on a node, but rather on all nodes and ranks under a given leaf. By not requiring many nodes to

connect to each rail, we can keep the advantage of predictable performance and a single stage. We can signal the SLURM to

treat the 8 nodes and 64 accelerators under a leaf as a single stage, not segmented by rank but by rack.

Suppose we utilize a Slurm topology/block plugin introduced in Slurm 23.11 and refined in 24.05. In that case, we can

integrate this rack optimization and adjacency into resource scheduling to reap the benefits of a rail-optimized design,

16 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

specifically implementing the rails at the rack or racks block level. The drawing below illustrates how this would appear for

this validated design.

Figure 19 - Slurm Topology/Block Plugin

17 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Supermicro Validated MI300X-MI355X Design: 4 Scale Units for 256 MI300X-MI355X

Figure 20 below illustrates the hardware layout of a 4 SU cluster interconnected by 2 spines. This 2-tier design assumes no

over-subscription on the fabric. Depending on the power footprint, the individual scale units can be either 1 or 2 racks, and

this design is highly adaptable, which we utilize in all our design scales. Suppose we maintain the design constraint to a

maximum of two tiers. In that case, this solution with the specified product set can scale up to a maximum of 4,000 MI300X-

MI355X accelerators in the cluster shown below.

Figure 20 - Maximal 2 Tier Fabric Cluster or This Solution

If even higher-scale numbers are needed, we can scale up to a 3-tier topology using a superspine and retain full non-blocking

performance on the cluster, as shown in Figure 21 below. We can go even further if needed by adding more superspine planes.

18 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Figure 21 - Sample 3 -Tier Fabric Cluster for this Solution (Can scale much higher)

19 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Handling Transient Flow Hashes on Fabric

When accelerators complete a given calculation as part of the overall training process and start the process of collective

communication to share their work, multiple large flows are established to the parallelized group of peers working together.

These flows are classified as elephant flows for large sizes, but they are not steady and constant, as per the DLB section of this

document. Flows will use a combination of initial hashing to determine links to use, which DLB optimizes for congestion

based on the flowlets discussed earlier. This can show transient bandwidth overlaps, where many links may be utilizing a

higher percentage of the bandwidth. Hence, practitioners in the industry look at some alternative methods to account for

these, and internal Supermicro research has resulted in a preference in this area. Figure 22 below illustrates some common

alternatives and a method for utilizing different bandwidths on the node-to-leaf versus the leaf-to-spine paths, thereby

reducing the likelihood that higher-utilized flows will exhaust their bandwidth before completing rebalancing with DLB. This

delays the utilization of PFC and ECN signaling, resulting in overall better performance.

Figure 3 - Transients in Hashing and DLB adjustments

20 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Grouping of Parallel Links from Leaf’s to Spine’s

There are multiple parallel links from each switch to each spine – and a network engineer may consider alternatives of a

portchannel of those links, or a set of parallel BGP unnumbered links to achieve this connectivity. When we use ECMP alone,

we often desire a power of 2 in the number of spines, allowing traffic to be evenly balanced over these links. In variations of

these validated designs (i.e., adding an odd number of SU’s, etc.), you would see cases where the numbers of spines and links

are not always guaranteed to be a power of 2. With traditional switching silicon, this leads to unbalanced flows (meaning

some links can be carrying 2x the traffic of others). Also, with default ECMP, only the entire flow is hashed to a member link.

Fortunately, the Broadcom Tomahawk 5 silicon features modulo 16 hashing, which can produce an even set of probabilities

over even non-power-of-2 links. While that helps, we can take it a step further with the deployment of Dynamic Load

Balancing (DLB), which we discussed earlier. This is an adaptive routing implementation, which is referred to as Adaptive

Routing and Switching (ARS) in the SONiC CLI. With this, we not only get a per-flow hashing to any number of links and/or

spines, but we also go more granular than a per-flow hash to a “per-flowlet” hash we talked about above. This provides an

intermediate solution between per flow hashing (to guarantee in-order delivery on any RNIC) and per-packet hashing (needing

to reconstitute the sprayed packets on the receiving RNIC, forcing more resource requirements on that RNIC) to allow for the

per-flowlet hashing based on RTT measurements, such that we can spread a slow over parallel links and still achieve in-order

delivery on standard RNICs. This all results in a recommendation to not configure a port-channel from leafs to spines, rather

configure a parallel set of unnumbered BGP and let the DLB perform this optimal action.

Figure 22 - 32 system 256 Accelerator design with 400G to each MI300X -MI355X

21 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Validated Design Architecture and Assumptions to Result in Detailed Configurations

¶ Example is for a 4 leaf, 2-spine cluster network (logic below can be scaled to much higher counts, however)

¶ Front end, north-south bonded interface pair (2x10GE) and its IP are not within the scope here as providers have well

established methods to assign to various tenants for their use – but we will generally call out the hostname which

maps to those IP’s as corona_node1 through _node16, heineken_node1 through _node8, and budweiser_node1

through _node8

¶ Simple cluster fabric IP addressing illustrates (use 100.64.0.0/10 space RFC 7793 with 64+Tenant ID for 2nd Octet with

none set via DHCP nor in DNS as these are dedicated to back-end east-west cluster traffic

¶ Design supports 64 max tenants, max nodecount of 32,768 per tenant (can adjust boundaries for ratios of these)

¶ We don't summarize on the leaf boundary if tenant nodes can be anywhere (but the general goal is to keep tenants’

nodes together)

¶ Router-id's will be:

o 100.64.0.0/32-100.64.0.255/32 for super spines (256 max if 3-tier cluster)

o 100.64.1.0/32-100.64.2.255/32 for spines (512 max)

o 100.64.3.0/32-100.64.4.255/32 for leafs (512 max)

¶ vtep IP's will be on 100.64.5.0/32-100.64.6.255/32 on leafs (512 max)

¶ For ease of troubleshooting, I will start above at base 1, however (i.e., leaf1, spine1)

¶ Each GPU then has a /31 route in the cluster table, where the IPv4 route scale of almost 1M will fit

¶ All RNICs are assumed to be AOC-S400G-B1C at 400GE

¶ In AI, we run L3 to each RNIC on the hosts, with vrf segments per tenant

o All GPUs talk to each other via L3 only, whether under a single leaf or multiple

¶ 3 Tenants numbered 1 and up - Corona, Heineken, and Budweiser with vrf names to match

o although this configuration and example will fully work with just 1 tenant, also

¶ IP subnets for tenants

o Corona subnets are of 100.65.0.0/31 and up

o Heineken subnets are of 100.66.0.0/31 and up

o Budweiser subnets are of 100.67.0.0/31 and up

¶ VLAN 61 (Corona), 62 (Heineken), and 63 (Budweiser) are the tenant VLAN assigned for transport in the L3 VXLAN

(60+tenant ID)

¶ Corona has 128 Accelerators with 32 under each leaf, Heineken has 64 accelerators with 32 under leafs 1-2, and

Budweiser has 64 accelerators with 32 under leafs 3-4 (but with design, they could be spread anywhere on the cluster)

¶ Leaf1 has both Corona and Heineken on multiple interfaces (Eth 1/9/1-1/24/2 for Corona nodes, Eth 1/41/1-1/56/2 for

Heineken nodes), and these tenant nodes only see each other locally and over the entire fabric L3. Uplinks to Spine1

are Eth 1/1-1/7 & Eth1/25-1/32, while uplinks to Spine2 are Eth 1/33-1/40 & Eth 1/57-1/64 all at 800G

¶ Leaf2 has both Corona and Heineken on multiple interfaces (Eth 1/9/1-1/24/2 for Corona nodes, Eth 1/41/1-1/56/2 for

Heineken nodes), and these tenant nodes only see each other locally and over the entire fabric L3. Uplinks to Spine1

are Eth 1/1-1/7 & Eth1/25-1/32, while uplinks to Spine2 are Eth 1/33-1/40 & Eth 1/57-1/64 all at 800G

¶ Leaf3 has both Corona and Budweiser on multiple interfaces (Eth 1/9/1-1/24/2 for Corona nodes, Eth 1/41/1-1/56/2

for Budweiser nodes) and these tenant nodes only see to each other local and over entire fabric L3. Uplinks to Spine1

are Eth 1/1-1/7 & Eth1/25-1/32, while uplinks to Spine2 are Eth 1/33-1/40 & Eth 1/57-1/64 all at 800G

¶ Leaf4 has both Corona and Budweiser on multiple interfaces (Eth 1/9/1-1/24/2 for Corona nodes, Eth 1/41/1-1/56/2

for Budweiser nodes), and these tenant nodes only see each other locally and over the entire fabric L3. Uplinks to

Spine1 are Eth 1/1-1/7 & Eth1/25-1/32, while uplinks to Spine2 are Eth 1/33-1/40 & Eth 1/57-1/64 all at 800G

22 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Visual of the 3 Tenants on a virtualized GPU cloud service

Below is the simplified visual of the above example in this document:

Figure 23 - 3 Tenant View on Cluster

Performance of a Validated Design

This section will present some sample RCCL testing numbers from the Supermicro Performance Analysis Center. One

important note: while the design showcased here is validated with all components for correct operation, the performance

tests were conducted on the available hardware at the time of this report. We performed these tests with four nodes, each

equipped with eight MI300X, for a total of thirty-two. Two of the nodes were connected to one leaf, while the other two were

connected to an alternate leaf. The two leafs were linked to a common spine to realize the three stages in this design.

Interpretation of These Results

With these standard testing toolsets for collective communications, a significant amount of information is displayed, including

portions relevant to the network fabric. At the highest level is the meaning of out-of-place and in-place, which means we care

about how the buffers are manipulated within the testing tool (in-place means same virtual address for both source and

destination buffers, out-of-place means different virtual addresses – so some copying can be saved internally). There is

typically little difference in those as the buffers become larger. Next, we determine the applicable size and element counts,

which are crucial for extracting latency on the smallest element sizes. The elephant flows in our design are not as impacted by

this, so we will not spend time there.

The algbw is where we start getting the most interest, and in the in-place, as more of the test is tied to the performance of the

fabric. This value represents the algorithm's total data size divided by the time it takes to complete the collection. Lastly is

the busbw, which is simply a mathematical calculation that then takes the total number of ranks in the test into account (i.e.,

this itself is not directly impacted by fabric usage, rank counts, or test tool load spread on the nodes – the algbw is, and this is

23 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

a derivative equation). This calculation is dependent on the collective and the most impactful metric to track overall fabric

design performance. A couple of examples are below:

All_reduce: busbw = algbw * (2*(#ranks-1)/#ranks)

All_gather: busbw = algbw * (#ranks-1)/#ranks

All_to_all: busbw = algbw * (#ranks-1)/#ranks

Actual Performance Results

To help establish a baseline, we will start with the RCCL performance of various collectives to compare it to the scale-out

fabric results.

Single Node Results

Nodes Test Size # Ranks Loop Ranks/Node MI300X NW

busbw (GB/s)

1 All_reduce 16GB 1 100 8 322.38

All_gather 318.29

Alltoall 303.73

Alltoallv 182.07

Broadcast 321.30

Gather 340.03

Reduce 293.28

Reduce_scatter 320.02

Scatter 330.68

Send_recv 8GB 48.08

2 Nodes Connected to Single Leaf Results

Nodes Test Size # Ranks Loop Ranks/Node MI300X NW

busbw (GB/s)

2 All_reduce 16GB 16 100 8 280.08

All_gather 261.69

Alltoall 62.05

Alltoallv 44.97

Broadcast 247.2

Gather 70.46

Reduce 274.44

Reduce_scatter 289.94

Scatter 70.74

Send_recv 8GB 12.02

2 Nodes Connected over a Spine Path Results

Nodes Test Size # Ranks Loop Ranks/Node MI300X NW

busbw (GB/s)

24 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

2 All_reduce 16GB 16 100 8 278.88

All_gather 261.77

Alltoall 61.40

Alltoallv 44.86

Broadcast 246.53

Gather 69.92

Reduce 275.6

Reduce_scatter 287.92

Scatter 70.81

Send_recv 8GB 11.97

4 Nodes Connected as 2 per Leaf Results

Nodes Test Size # Ranks Loop Ranks/Node MI300X NW

busbw (GB/s)

4 All_reduce 16GB 32 100 8 277.7

All_gather 261.79

Alltoall 48.27

Alltoallv 39.03

Broadcast 241.8

Gather 60.38

Reduce 230.95

Reduce_scatter 288.93

Scatter 62.09

Send_recv 8GB 11.99

Storage Network Validated Design

There are multiple alternatives in the storage portion of the cluster, with the goal of keeping up with the data to/from the

accelerators as they function. One possible solution is for the customer to utilize a file system that leverages the NVMe

capabilities present on the AS-8126GS-TNMR, as shown in the block diagram above, which illustrates a direct connection via

the PLX switches.

While the SATA drives in slots 8 and 9 are ideal for the Ubuntu installation, the other eight NVMe drives are optimized for

parallel storage that is placed next to the accelerator, allowing RDMA to the storage directly. Some solutions also allow for an

adjacent set of flash local to each rack. To scale this, we recommend a dedicated storage switch pair and Supermicro storage

servers with a suitable high-performance stack, such as Weka, DDN, Vast, or many other excellent products available. A

software solution can be configured to cluster this storage across nodes with tenant-aware namespaces. For added security,

we could also employ VRF technology on this portion of the cluster. In Figure 24 below, we illustrate the connectivity from a

north-south networking perspective.

25 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Figure 24 - Storage Fabric and Targets

As an aside, these solutions will have two more networks connected in the cluster. Firstly, we have an out-of-band

management setup where a 1GE Cat6 cable connects to the server BMC for routine setup and monitoring operations. It is on

that connection that we do the BIOS configurations mentioned below. Another network is the “front end,” or again north-

south, but for the in-band access. This network connects as a redundant pair, which in some cases is dedicated 10/25 GE that

will have firewalled Internet and/or VPN reachability for apt-get/wget/rpm/tenant access/etc. operations, but in many cases, it

is collapsed onto the storage network above. If that is the case, we would extend links to a set of border devices.

Importance of Automation of Fabric Configuration and Operations at any scale

If you look ahead to Appendix A, which outlines the device configuration for this relatively straightforward cluster of 4 leaves

and two spines, you will see the scale and detail in the configuration for an Ethernet fabric in these designs. As we are looking

at deployments that scale into 2/3/4 digits of switches and potentially tens of thousands of links, the probability of human

error in many areas mandates the need for automation:

¶ Producing detailed architectural drawings of the cluster for proper equipment ordering and builds

¶ Automated output of detailed cabling maps with labeling at each end of the cables for these infrastructure elements

from the RNICs to the leaf, to the spine, and perhaps even superspine to keep ahead of future operations

¶ Methods such as programmatic LLDP adjacency tests and/or IP Ping tests to validate proper cabling

¶ Methods for programmatic IP and BGP ASN assignment from a single source of truth database for the RNIC, switching,

storage, front end, and BMC networks in a coordinated manner go beyond today’s IPAM and DHCP capabilities

¶ Automated methods for server BIOS policies, RNIC policies, and distribution of policy to endpoints on when to signal

interesting telemetry notifications and actions instead of polls and centralized processing of vast amounts of data

¶ Methods to coordinate QoS configurations of all elements in the infrastructure

¶ Methods to manage all device firmware lifecycle on all the constituent elements

¶ Automation of integrations of the topology with resource management tooling to provide efficient traffic

management

¶ Performance optimization and acceptance testing, along with diagnostic tooling from available telemetry

¶ Inventory Management

There are many more items on this list, and much activity in the industry for portions of the above. Many vendors, including

Supermicro, are working towards the goal of bringing all these together and expect announcements to follow as we are all

26 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

forced to tackle these tasks. Configuration of these elements from a centralized solution will eliminate the need for direct

usage of individual device CLI’s, APIs, and web interfaces.

An upcoming paper sharing a new Supermicro controller product in this space will demonstrate how this and other validated

designs with multiple accelerator solutions can now be integrated not only into the topology definition and deployment, but

also to include best practice optimizations based on that specific validated solution. Once the equipment arrives on-site, the

installation and cabling are complete. The tooling can then validate the infrastructure and minimize the time to revenue. To

facilitate an even shorter-term deployment, the next section, which includes having fully built and tested rack-level

infrastructure delivered, is included.

How to Minimize Deployment Time – L12 Rack Pre-Built Solution from Supermicro

Total Rack Scale Solution

Supermicro’s Rack Scale Solution Stack offers a fully integrated, end-to-end total solution that optimizes performance,

efficiency, and scalability for AI, cloud, and enterprise workloads. As a total solution provider, Supermicro removes the

complexity of multi-vendor integration by providing a pre-validated, high-density rack solution equipped with best-in-class

servers, storage, networking, and power management, ensuring seamless deployment and faster time-to-value. By leveraging

industry-leading energy efficiency, liquid and air-cooled designs, and global logistics capabilities, Supermicro delivers a cost-

effective and future-proof solution designed to meet the most demanding IT requirements. Customers benefit from direct

manufacturer expertise, reduced operational overhead, and a single point of accountability, ensuring a streamlined

procurement, deployment, and support experience that maximizes ROI.

Figure 25 - Example Rack Solution Stack

27 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Onsite Deployment

Supermicro’s Onsite Deployment Services ensure a seamless, end-to-end installation of AI and High-Performance Computing

(HPC) clusters, accelerating time to production for enterprise applications, including LLMs, AI training, and mission-critical

workloads. Our dedicated deployment team manages rack installation, cabling, labeling, network configuration, and testing

to ensure optimal functionality and compliance with customer specifications. By leveraging Supermicro’s expertise and pre-

validated deployment processes, customers reduce downtime, integration risks, and operational overhead, allowing IT teams

to concentrate on performance tuning instead of infrastructure setup. With factory-trained professionals and global

deployment capabilities, Supermicro provides a turnkey, fully optimized rack solution that is ready to run, helping

organizations maximize efficiency, lower costs, and ensure long-term reliability.

 Summary

This document provides an organized plan from start to finish that helps shorten the implementation time for clusters of

various sizes (with a focus on 32 nodes to illustrate detailed concepts) while delivering business value in the shortest time.

Additionally, further optimizations allow parts of the configuration and steps outlined here to be completed before the

equipment even arrives onsite, especially if you are performing the installation yourself. Alternatively, Supermicro rack

services can ensure the fastest time-to-value. Supermicro can share details of those possibilities in partnership with the

organization executing the project.

28 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Appendix A: Accelerator Fabric Detailed Leaf and Spine Configuration Steps

All Switches are running Enterprise Advanced 4.4.0 SONiC

Basic Starting Switch Preparation

To bootstrap the switches, you use a serial port (or USB to serial dongle) to access the console port and do the following steps

to lay the base for applying the real configuration to the devices in subsequent operations. The console port and access

defaults are below:

¶ 115,200 (8, N, 1)

¶ Default login: admin

¶ Default password: YourPaSsWoRd

¶ Disable ZTP using: config ZTP disable -y

¶ Wait for ‘System Ready’

¶ Enter the industry standard command line interface using: sonic-cli

¶ To set the management IP (an IP on your existing management switch):

o Leaf1# config terminal

o Leaf1(config)# ip vrf mgmt

o Leaf1(config)# username supermicro password testing123 role admin

o Leaf1(config)# interface management 0

o Leaf1(config-mgmt0)# ip address 10.1.1.101/24 gwaddr 10.1.1.1 <- your IP/subnet/dgw here

o Leaf1(config-mgmt0)# exit

o Leaf1(config)# exit

o Leaf1# write memory

¶ Connect the management RJ45 1GE port into your network for remote access without the console requirement going

forward

NOTE: All of the configuration examples below will utilize an industry-standard CLI that exists on the SSE-T8164S Supermicro

Enterprise Advanced SONiC, as this is the simplest descriptive method used by network administrators today. Supermicro

highly recommends using tooling to automate these configurations, where the built configurations are injected into the

switch via methods such as ZTP, Ansible, Puppet, gNMI, and gRPC, as well as other available tooling. These greatly reduce the

probability of human error on data entry to these devices as we scale these solutions.

One important first step is to configure breakout ports on each switch before placing actual configurations there. Many

elements will not be correct if we attempt to do the breakouts later. One good way is to configure all ports as 2x400G

breakout mode via a script (or sequential manual command below):

SpineN/LeafN(config)# interface breakout port X/1 mode 2x400G (where X ranges from 1 to 64)

A Python script is available from the Supermicro switch team that can solicit the IP address of a new switch, gather login

details, and configure the ports in a single operation. A screenshot of the script in operation is below, where the user selects

the breakout mode desired (2x400G for this validated design) and the ports to apply it to (Eth1/9 through Eth1/24 and Eth1/41

through Eth1/56, as 2x400G is used for only leaf to systems).

29 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Figure 26 - Default Interface Lanes - 1x800GE

Figure 27 - Running Script from IDE

Figure 28 - Breakout Selection

30 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Figure 29 - Resulting Breakouts for all Ports

Leaf1

Leaf1# config terminal

Leaf1(config)# lldp enable

! Now we are ready to initialize all default RoCE buffers and QoS under a single command

Leaf1(config)# roce enable

! Assign source VXLAN and Router ID addresses to loopback interfaces

Leaf1(config)# interface loopback 0

Leaf1(config-if-lo0)# description Router-id

Leaf1(config-if-lo0)# ip address 100.64.3.1/32

Leaf1(config-if-lo0)# exit

Leaf1(config)# interface loopback 1

Leaf1(config-if-lo1)# description Vtep

Leaf1(config-if-lo1)# ip address 100.64.5.1/32

Leaf1(config-if-lo1)# exit

! Setup the Adaptive Routing and switching globals

Leaf1(config)# ars profile default

Leaf1(config-ars-profile)# exit

Leaf1(config)# ars bind default

Leaf1(config)# ars port-profile default

Leaf1(config-ars-port-profile)# enable

Leaf1(config-ars-port-profile)# exit

Leaf1(config)# ars object default

Leaf1(config-ars-object)# exit

Leaf1(config)# route-map ars-map permit 10

Leaf1(config-route-map)# set ars-object default

Leaf1(config-route-map)# exit

Leaf1(config)# ip protocol any route-map ars-map

Leaf1(config)# route-map RM_SET_SRC permit 10

Leaf1(config-route-map)# set ars-object default

Leaf1(config-route-map)# exit

! Setup uplink interfaces to Spine1

! Note – do all 1/1 to 1/8 in this block (showing just first and last)

Leaf1(config)# interface Eth 1/1

Leaf1(config-if-Eth1/1)# description Link to Spine1

Leaf1(config-if-Eth1/1)# speed 800000

Leaf1(config-if-Eth1/1)# unreliable-los auto

31 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf1(config-if-Eth1/1)# no shutdown

Leaf1(config-if-Eth1/1)# mtu 9100

Leaf1(config-if-Eth1/1)# ipv6 enable

Leaf1(config-if-Eth1/1)# ars bind default

Leaf1(config-if-Eth1/1)# exit

! Range of 6 links here 1/2-1/7

Leaf1(config)# interface Eth 1/8

Leaf1(config-if-Eth1/8)# description Link to Spine1

Leaf1(config-if-Eth1/8)# speed 800000

Leaf1(config-if-Eth1/8)# unreliable-los auto

Leaf1(config-if-Eth1/8)# no shutdown

Leaf1(config-if-Eth1/8)# mtu 9100

Leaf1(config-if-Eth1/8)# ipv6 enable

Leaf1(config-if-Eth1/8)# ars bind default

Leaf1(config-if-Eth1/8)# exit

! Now doing the next block of uplinks to spine 1

! Note – do all 1/25 to 1/32 in this block (showing just first and last)

Leaf1(config)# interface Eth 1/25

Leaf1(config-if-Eth1/25)# description Link to Spine1

Leaf1(config-if-Eth1/25)# speed 800000

Leaf1(config-if-Eth1/25)# unreliable-los auto

Leaf1(config-if-Eth1/25)# no shutdown

Leaf1(config-if-Eth1/25)# mtu 9100

Leaf1(config-if-Eth1/25)# ipv6 enable

Leaf1(config-if-Eth1/25)# ars bind default

Leaf1(config-if-Eth1/25)# exit

! Range of 6 links here 1/26-1/31

Leaf1(config)# interface Eth 1/32

Leaf1(config-if-Eth1/32)# description Link to Spine1

Leaf1(config-if-Eth1/32)# speed 800000

Leaf1(config-if-Eth1/32)# unreliable-los auto

Leaf1(config-if-Eth1/32)# no shutdown

Leaf1(config-if-Eth1/32)# mtu 9100

Leaf1(config-if-Eth1/32)# ipv6 enable

Leaf1(config-if-Eth1/32)# ars bind default

Leaf1(config-if-Eth1/32)# exit

! Setup uplink interfaces to Spine2

! Note – do all 1/33 to 1/40 in this block (showing just first and last)

Leaf1(config)# interface Eth 1/33

Leaf1(config-if-Eth1/33)# description Link to Spine2

Leaf1(config-if-Eth1/33)# speed 800000

Leaf1(config-if-Eth1/33)# unreliable-los auto

Leaf1(config-if-Eth1/33)# no shutdown

Leaf1(config-if-Eth1/33)# mtu 9100

32 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf1(config-if-Eth1/33)# ipv6 enable

Leaf1(config-if-Eth1/33)# ars bind default

Leaf1(config-if-Eth1/33)# exit

! Range of 6 links here 1/34-1/39

Leaf1(config)# interface Eth 1/40

Leaf1(config-if-Eth1/40)# description Link to Spine2

Leaf1(config-if-Eth1/40)# speed 800000

Leaf1(config-if-Eth1/40)# unreliable-los auto

Leaf1(config-if-Eth1/40)# no shutdown

Leaf1(config-if-Eth1/40)# mtu 9100

Leaf1(config-if-Eth1/40)# ipv6 enable

Leaf1(config-if-Eth1/40)# ars bind default

Leaf1(config-if-Eth1/40)# exit

! Now doing next block of uplinks to spine 2

! Note – do all 1/57 to 1/64 in this block (showing just first and last)

Leaf1(config)# interface Eth 1/57

Leaf1(config-if-Eth1/57)# description Link to Spine2

Leaf1(config-if-Eth1/57)# speed 800000

Leaf1(config-if-Eth1/57)# unreliable-los auto

Leaf1(config-if-Eth1/57)# no shutdown

Leaf1(config-if-Eth1/57)# mtu 9100

Leaf1(config-if-Eth1/57)# ipv6 enable

Leaf1(config-if-Eth1/57)# ars bind default

Leaf1(config-if-Eth1/57)# exit

! Range of 6 links here 1/58-1/63

Leaf1(config)# interface Eth 1/64

Leaf1(config-if-Eth1/64)# description Link to Spine2

Leaf1(config-if-Eth1/64)# speed 800000

Leaf1(config-if-Eth1/64)# unreliable-los auto

Leaf1(config-if-Eth1/64)# no shutdown

Leaf1(config-if-Eth1/64)# mtu 9100

Leaf1(config-if-Eth1/64)# ipv6 enable

Leaf1(config-if-Eth1/64)# ars bind default

Leaf1(config-if-Eth1/64)# exit

! Create tenant VRFs for a multi-tenant environment (NOTE: Can just setup a single tenant/VRF only also)

Leaf1(config)# ip vrf Corona

Leaf1(config)# ip vrf Heineken

! No nodes for Budweiser here on leaf1, but for future if needed

Leaf1(config)# ip vrf Budweiser

! Assign /31 IP's to Corona's host interfaces Eth 1/9/1-1/24/2 (showing just first and last)

! SSE-8164 best practice to use the inner 32 ports for hosts

Leaf1(config)# interface Eth 1/9/1

Leaf1(config-if-Eth1/9/1)# speed 400000

Leaf1(config-if-Eth1/9/1)# mtu 9100

33 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf1(config-if-Eth1/9/1)# fec RS

Leaf1(config-if-Eth1/9/1)# standalone-link-training

Leaf1(config-if-Eth1/9/1)# unreliable-los auto

Leaf1(config-if-Eth1/9/1)# no shutdown

Leaf1(config-if-Eth1/9/1)# ip address 100.65.0.0/31

Leaf1(config-if-Eth1/9/1)# description Link to Corona Node 1 RNIC Slot 1 with IP 100.65.0.1/31

Leaf1(config-if-Eth1/9/1)# ip vrf forwarding Corona

Leaf1(config-if-Eth1/9/1)# exit

! Range of 30 links here 1/9/2-1/24/1

Leaf1(config)# interface Eth 1/24/2

Leaf1(config-if-Eth1/24/2)# speed 400000

Leaf1(config-if-Eth1/24/2)# mtu 9100

Leaf1(config-if-Eth1/24/1)# fec RS

Leaf1(config-if-Eth1/24/1)# standalone-link-training

Leaf1(config-if-Eth1/24/1)# unreliable-los auto

Leaf1(config-if-Eth1/24/1)# no shutdown

Leaf1(config-if-Eth1/24/2)# ip address 100.65.0.62/31

Leaf1(config-if-Eth1/24/2)# description Link to Corona Node 4 RNIC Slot 8 with IP 100.65.0.63/31

Leaf1(config-if-Eth1/24/2)# ip vrf forwarding Corona

Leaf1(config-if-Eth1/24/2)# exit

! Assign /31 IP's to Heineken's host interfaces Eth 1/41/1-1/56/2 (showing just first and last)

Leaf1(config)# interface Eth 1/41/1

Leaf1(config-if-Eth1/41/1)# speed 400000

Leaf1(config-if-Eth1/41/1)# mtu 9100

Leaf1(config-if-Eth1/41/1)# fec RS

Leaf1(config-if-Eth1/41/1)# standalone-link-training

Leaf1(config-if-Eth1/41/1)# unreliable-los auto

Leaf1(config-if-Eth1/41/1)# no shutdown

Leaf1(config-if-Eth1/41/1)# ip address 100.66.0.0/31

Leaf1(config-if-Eth1/41/1)# description Link to Heineken Node 1 RNIC Slot 1 with IP 100.66.0.1/31

Leaf1(config-if-Eth1/41/1)# ip vrf forwarding Heineken

Leaf1(config-if-Eth1/41/1)# exit

! Range of 30 links here 1/41/2-1/56/1

Leaf1(config)# interface Eth 1/56/2

Leaf1(config-if-Eth1/56/2)# speed 400000

Leaf1(config-if-Eth1/56/2)# mtu 9100

Leaf1(config-if-Eth1/56/1)# fec RS

Leaf1(config-if-Eth1/56/1)# standalone-link-training

Leaf1(config-if-Eth1/56/1)# unreliable-los auto

Leaf1(config-if-Eth1/56/1)# no shutdown

Leaf1(config-if-Eth1/56/2)# ip address 100.66.0.62/31

Leaf1(config-if-Eth1/56/2)# description Link to Heineken Node 4 RNIC Slot 8 with IP 100.66.0.63/31

Leaf1(config-if-Eth1/56/2)# ip vrf forwarding Heineken

Leaf1(config-if-Eth1/56/2)# exit

34 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

! Configure L3 VNI VLANs

Leaf1(config)# interface Vlan 61

Leaf1(config-if-Vlan61)# ip vrf forwarding Corona

Leaf1(config-if-Vlan61)# exit

Leaf1(config)# interface Vlan 62

Leaf1(config-if-Vlan62)# ip vrf forwarding Heineken

Leaf1(config-if-Vlan62)# exit

Leaf1(config)# interface Vlan 63

Leaf1(config-if-Vlan63)# ip vrf forwarding Budweiser

Leaf1(config-if-Vlan63)# exit

! Map VNIs to VLANs and L3 VNIs to VRFs

Leaf1(config)# interface vxlan vtep-1

Leaf1(config-if-vxlan-vtep-1)# source-ip 100.64.5.1

Leaf1(config-if-vxlan-vtep-1)# map vni 610 vlan 61

Leaf1(config-if-vxlan-vtep-1)# map vni 620 vlan 62

Leaf1(config-if-vxlan-vtep-1)# map vni 630 vlan 63

Leaf1(config-if-vxlan-vtep-1)# map vni 610 vrf Corona

Leaf1(config-if-vxlan-vtep-1)# map vni 620 vrf Heineken

Leaf1(config-if-vxlan-vtep-1)# map vni 630 vrf Budweiser

Leaf1(config-if-vxlan-vtep-1)# qos-mode uniform

Leaf1(config-if-vxlan-vtep-1)# exit

! setup underlay and overlay BGP

Leaf1(config)# router bgp 65101

Leaf1(config-router-bgp)# router-id 100.64.3.1

Leaf1(config-router-bgp)# address-family ipv4 unicast

Leaf1(config-router-bgp-af)# redistribute connected

Leaf1(config-router-bgp-af)# maximum-paths 64

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# address-family l2vpn evpn

Leaf1(config-router-bgp-af)# advertise-all-vni

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# peer-group SPINES

Leaf1(config-router-bgp-pg)# remote-as external

Leaf1(config-router-bgp-pg)# timers 3 9

Leaf1(config-router-bgp-pg)# advertisement-interval 5

Leaf1(config-router-bgp-pg)# bfd

Leaf1(config-router-bgp-pg)# capability extended-nexthop

Leaf1(config-router-bgp-pg)# address-family ipv4 unicast

Leaf1(config-router-bgp-pg-af)# activate

Leaf1(config-router-bgp-pg-af)# exit

Leaf1(config-router-bgp-pg)# address-family l2vpn evpn

Leaf1(config-router-bgp-pg-af)# activate

Leaf1(config-router-bgp-pg-af)# exit

Leaf1(config-router-bgp-pg)# exit

35 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

! Note – do all 1/1 to 1/7 neighbors in this block (showing just first and last)

Leaf1(config-router-bgp)# neighbor interface Eth 1/1

Leaf1(config-router-bgp-neighbor)# description Link to Spine1

Leaf1(config-router-bgp-neighbor)# peer-group SPINES

Leaf1(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/2-1/7

Leaf1(config-router-bgp)# neighbor interface Eth 1/8

Leaf1(config-router-bgp-neighbor)# description Link to Spine1

Leaf1(config-router-bgp-neighbor)# peer-group SPINES

Leaf1(config-router-bgp-neighbor)# exit

Leaf1(config-router-bgp)# neighbor interface Eth 1/25

Leaf1(config-router-bgp-neighbor)# description Link to Spine1

Leaf1(config-router-bgp-neighbor)# peer-group SPINES

Leaf1(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/26-1/31

Leaf1(config-router-bgp)# neighbor interface Eth 1/32

Leaf1(config-router-bgp-neighbor)# description Link to Spine1

Leaf1(config-router-bgp-neighbor)# peer-group SPINES

Leaf1(config-router-bgp-neighbor)# exit

Leaf1(config-router-bgp)# neighbor interface Eth 1/33

Leaf1(config-router-bgp-neighbor)# description Link to Spine2

Leaf1(config-router-bgp-neighbor)# peer-group SPINES

Leaf1(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/33-1/41

Leaf1(config-router-bgp)# neighbor interface Eth 1/40

Leaf1(config-router-bgp-neighbor)# description Link to Spine2

Leaf1(config-router-bgp-neighbor)# peer-group SPINES

Leaf1(config-router-bgp-neighbor)# exit

Leaf1(config-router-bgp)# neighbor interface Eth 1/57

Leaf1(config-router-bgp-neighbor)# description Link to Spine2

Leaf1(config-router-bgp-neighbor)# peer-group SPINES

Leaf1(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/58-1/63

Leaf1(config-router-bgp)# neighbor interface Eth 1/64

Leaf1(config-router-bgp-neighbor)# description Link to Spine2

Leaf1(config-router-bgp-neighbor)# peer-group SPINES

Leaf1(config-router-bgp-neighbor)# exit

Leaf1(config-router-bgp)# exit

Leaf1(config)# router bgp 65101 vrf Corona

Leaf1(config-router-bgp)# address-family ipv4 unicast

Leaf1(config-router-bgp-af)# redistribute connected

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# address-family l2vpn evpn

Leaf1(config-router-bgp-af)# advertise ipv4 unicast

36 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# exit

Leaf1(config)# router bgp 65101 vrf Heineken

Leaf1(config-router-bgp)# address-family ipv4 unicast

Leaf1(config-router-bgp-af)# redistribute connected

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# address-family l2vpn evpn

Leaf1(config-router-bgp-af)# advertise ipv4 unicast

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# exit

Leaf1(config)# router bgp 65101 vrf Budweiser

Leaf1(config-router-bgp)# address-family ipv4 unicast

Leaf1(config-router-bgp-af)# redistribute connected

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# address-family l2vpn evpn

Leaf1(config-router-bgp-af)# advertise ipv4 unicast

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# exit

Leaf1(config)# exit

Leaf1# write memory

Leaf2

Leaf2# config terminal

Leaf2(config)# lldp enable

! Now we are ready to initialize all default RoCE buffers and QoS under a single command

Leaf2(config)# roce enable

! Assign source VXLAN and Router ID addresses to loopback interfaces

Leaf2(config)# interface loopback 0

Leaf2(config-if-lo0)# description Router-id

Leaf2(config-if-lo0)# ip address 100.64.3.2/32

Leaf2(config-if-lo0)# exit

Leaf2(config)# interface loopback 1

Leaf2(config-if-lo1)# description Vtep

Leaf2(config-if-lo1)# ip address 100.64.5.2/32

Leaf2(config-if-lo1)# exit

! Setup the Adaptive Routing and switching globals

Leaf2(config)# ars profile default

Leaf2(config-ars-profile)# exit

Leaf2(config)# ars bind default

Leaf2(config)# ars port-profile default

Leaf2(config-ars-port-profile)# enable

Leaf2(config-ars-port-profile)# exit

Leaf2(config)# ars object default

Leaf2(config-ars-object)# exit

37 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf2(config)# route-map ars-map permit 10

Leaf2(config-route-map)# set ars-object default

Leaf2(config-route-map)# exit

Leaf2(config)# ip protocol any route-map ars-map

Leaf2(config)# route-map RM_SET_SRC permit 10

Leaf2(config-route-map)# set ars-object default

Leaf2(config-route-map)# exit

! Setup uplink interfaces to Spine1

! Note – do all 1/1 to 1/7 in this block (showing just first and last)

Leaf2(config)# interface Eth 1/1

Leaf2(config-if-Eth1/1)# description Link to Spine1

Leaf2(config-if-Eth1/1)# speed 800000

Leaf2(config-if-Eth1/1)# unreliable-los auto

Leaf2(config-if-Eth1/1)# no shutdown

Leaf2(config-if-Eth1/1)# mtu 9100

Leaf2(config-if-Eth1/1)# ipv6 enable

Leaf2(config-if-Eth1/1)# ars bind default

Leaf2(config-if-Eth1/1)# exit

! Range of 6 links here 1/2-1/7

Leaf2(config)# interface Eth 1/8

Leaf2(config-if-Eth1/8)# description Link to Spine1

Leaf2(config-if-Eth1/8)# speed 800000

Leaf2(config-if-Eth1/8)# unreliable-los auto

Leaf2(config-if-Eth1/8)# no shutdown

Leaf2(config-if-Eth1/8)# mtu 9100

Leaf2(config-if-Eth1/8)# ipv6 enable

Leaf2(config-if-Eth1/8)# ars bind default

Leaf2(config-if-Eth1/8)# exit

! Now doing next block of uplinks to spine 1

! Note – do all 1/25 to 1/32 in this block (showing just first and last)

Leaf2(config)# interface Eth 1/25

Leaf2(config-if-Eth1/25)# description Link to Spine1

Leaf2(config-if-Eth1/25)# speed 800000

Leaf2(config-if-Eth1/25)# unreliable-los auto

Leaf2(config-if-Eth1/25)# no shutdown

Leaf2(config-if-Eth1/25)# mtu 9100

Leaf2(config-if-Eth1/25)# ipv6 enable

Leaf2(config-if-Eth1/25)# ars bind default

Leaf2(config-if-Eth1/25)# exit

! Range of 6 links here 1/26-1/31

Leaf2(config)# interface Eth 1/32

Leaf2(config-if-Eth1/32)# description Link to Spine1

Leaf2(config-if-Eth1/32)# speed 800000

Leaf2(config-if-Eth1/32)# unreliable-los auto

38 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf2(config-if-Eth1/32)# no shutdown

Leaf2(config-if-Eth1/32)# mtu 9100

Leaf2(config-if-Eth1/32)# ipv6 enable

Leaf2(config-if-Eth1/32)# ars bind default

Leaf2(config-if-Eth1/32)# exit

! Setup uplink interfaces to Spine2

! Note – do all 1/33 to 1/40 in this block (showing just first and last)

Leaf2(config)# interface Eth 1/33

Leaf2(config-if-Eth1/33)# description Link to Spine2

Leaf2(config-if-Eth1/33)# speed 800000

Leaf2(config-if-Eth1/33)# unreliable-los auto

Leaf2(config-if-Eth1/33)# no shutdown

Leaf2(config-if-Eth1/33)# mtu 9100

Leaf2(config-if-Eth1/33)# ipv6 enable

Leaf2(config-if-Eth1/33)# ars bind default

Leaf2(config-if-Eth1/33)# exit

! Range of 6 links here 1/34-1/39

Leaf2(config)# interface Eth 1/40

Leaf2(config-if-Eth1/40)# description Link to Spine2

Leaf2(config-if-Eth1/40)# speed 800000

Leaf2(config-if-Eth1/40)# unreliable-los auto

Leaf2(config-if-Eth1/40)# no shutdown

Leaf2(config-if-Eth1/40)# mtu 9100

Leaf2(config-if-Eth1/40)# ipv6 enable

Leaf2(config-if-Eth1/40)# ars bind default

Leaf2(config-if-Eth1/40)# exit

! Now doing next block of uplinks to spine 2

! Note – do all 1/57 to 1/64 in this block (showing just first and last)

Leaf2(config)# interface Eth 1/57

Leaf2(config-if-Eth1/57)# description Link to Spine2

Leaf2(config-if-Eth1/57)# speed 800000

Leaf2(config-if-Eth1/57)# unreliable-los auto

Leaf2(config-if-Eth1/57)# no shutdown

Leaf2(config-if-Eth1/57)# mtu 9100

Leaf2(config-if-Eth1/57)# ipv6 enable

Leaf2(config-if-Eth1/57)# ars bind default

Leaf2(config-if-Eth1/57)# exit

! Range of 6 links here 1/58-1/63

Leaf2(config)# interface Eth 1/64

Leaf2(config-if-Eth1/64)# description Link to Spine2

Leaf2(config-if-Eth1/64)# speed 800000

Leaf2(config-if-Eth1/64)# unreliable-los auto

Leaf2(config-if-Eth1/64)# no shutdown

Leaf2(config-if-Eth1/64)# mtu 9100

39 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf2(config-if-Eth1/64)# ipv6 enable

Leaf2(config-if-Eth1/64)# ars bind default

Leaf2(config-if-Eth1/64)# exit

! Create tenant VRFs for a multi-tenant environment (NOTE: Can just setup a single tenant/VRF only also)

Leaf2(config)# ip vrf Corona

Leaf2(config)# ip vrf Heineken

! No nodes for Budweiser here on leaf2, but for future if needed

Leaf2(config)# ip vrf Budweiser

! Assign /31 IP's to Corona's host interfaces Eth 1/9/1-1/24/2 (showing just first and last)

! SSE-8164 best practice to use inner 32 ports for hosts

Leaf2(config)# interface Eth 1/9/1

Leaf2(config-if-Eth1/9/1)# speed 400000

Leaf2(config-if-Eth1/9/1)# mtu 9100

Leaf2(config-if-Eth1/9/1)# fec RS

Leaf2(config-if-Eth1/9/1)# standalone-link-training

Leaf2(config-if-Eth1/9/1)# unreliable-los auto

Leaf2(config-if-Eth1/9/1)# no shutdown

Leaf2(config-if-Eth1/9/1)# ip address 100.65.0.64/31

Leaf2(config-if-Eth1/9/1)# description Link to Corona Node 5 RNIC Slot 1 with IP 100.65.0.65/31

Leaf2(config-if-Eth1/9/1)# ip vrf forwarding Corona

Leaf2(config-if-Eth1/9/1)# exit

! Range of 30 links here 1/9/2-1/24/1

Leaf2(config)# interface Eth 1/24/2

Leaf2(config-if-Eth1/24/2)# speed 400000

Leaf2(config-if-Eth1/24/2)# mtu 9100

Leaf2(config-if-Eth1/24/1)# fec RS

Leaf2(config-if-Eth1/24/1)# standalone-link-training

Leaf2(config-if-Eth1/24/1)# unreliable-los auto

Leaf2(config-if-Eth1/24/1)# no shutdown

Leaf2(config-if-Eth1/24/2)# ip address 100.65.0.126/31

Leaf2(config-if-Eth1/24/2)# description Link to Corona Node 8 RNIC Slot 8 with IP 100.65.0.127/31

Leaf2(config-if-Eth1/24/2)# ip vrf forwarding Corona

Leaf2(config-if-Eth1/24/2)# exit

! Assign /31 IP's to Heineken's host interfaces Eth 1/41/1-1/56/2 (showing just first and last)

Leaf2(config)# interface Eth 1/41/1

Leaf2(config-if-Eth1/41/1)# speed 400000

Leaf2(config-if-Eth1/41/1)# mtu 9100

Leaf2(config-if-Eth1/41/1)# fec RS

Leaf2(config-if-Eth1/41/1)# standalone-link-training

Leaf2(config-if-Eth1/41/1)# unreliable-los auto

Leaf2(config-if-Eth1/41/1)# no shutdown

Leaf2(config-if-Eth1/41/1)# ip address 100.66.0.64/31

Leaf2(config-if-Eth1/41/1)# description Link to Heineken Node 5 RNIC Slot 1 with IP 100.66.0.65/31

Leaf2(config-if-Eth1/41/1)# ip vrf forwarding Heineken

40 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf2(config-if-Eth1/41/1)# exit

! Range of 30 links here 1/41/2-1/56/1

Leaf2(config)# interface Eth 1/56/2

Leaf2(config-if-Eth1/56/2)# speed 400000

Leaf2(config-if-Eth1/56/2)# mtu 9100

Leaf2(config-if-Eth1/56/1)# fec RS

Leaf2(config-if-Eth1/56/1)# standalone-link-training

Leaf2(config-if-Eth1/56/1)# unreliable-los auto

Leaf2(config-if-Eth1/56/1)# no shutdown

Leaf2(config-if-Eth1/56/2)# ip address 100.66.0.126/31

Leaf2(config-if-Eth1/56/2)# description Link to Heineken Node 8 RNIC Slot 8 with IP 100.66.0.127/31

Leaf2(config-if-Eth1/56/2)# ip vrf forwarding Heineken

Leaf2(config-if-Eth1/56/2)# exit

! Configure L3 VNI VLANs

Leaf2(config)# interface Vlan 61

Leaf2(config-if-Vlan61)# ip vrf forwarding Corona

Leaf2(config-if-Vlan61)# exit

Leaf2(config)# interface Vlan 62

Leaf2(config-if-Vlan62)# ip vrf forwarding Heineken

Leaf2(config-if-Vlan62)# exit

Leaf2(config)# interface Vlan 63

Leaf2(config-if-Vlan63)# ip vrf forwarding Budweiser

Leaf2(config-if-Vlan63)# exit

! Map VNIs to VLANs and L3 VNIs to VRFs

Leaf2(config)# interface vxlan vtep-2

Leaf2(config-if-vxlan-vtep-2)# source-ip 100.64.5.2

Leaf2(config-if-vxlan-vtep-2)# map vni 610 vlan 61

Leaf2(config-if-vxlan-vtep-2)# map vni 620 vlan 62

Leaf2(config-if-vxlan-vtep-2)# map vni 630 vlan 63

Leaf2(config-if-vxlan-vtep-2)# map vni 610 vrf Corona

Leaf2(config-if-vxlan-vtep-2)# map vni 620 vrf Heineken

Leaf2(config-if-vxlan-vtep-2)# map vni 630 vrf Budweiser

Leaf2(config-if-vxlan-vtep-2)# qos-mode uniform

Leaf2(config-if-vxlan-vtep-2)# exit

! setup underlay and overlay BGP

Leaf2(config)# router bgp 65102

Leaf2(config-router-bgp)# router-id 100.64.3.2

Leaf2(config-router-bgp)# address-family ipv4 unicast

Leaf2(config-router-bgp-af)# redistribute connected

Leaf2(config-router-bgp-af)# maximum-paths 64

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# address-family l2vpn evpn

Leaf2(config-router-bgp-af)# advertise-all-vni

Leaf2(config-router-bgp-af)# exit

41 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf2(config-router-bgp)# peer-group SPINES

Leaf2(config-router-bgp-pg)# remote-as external

Leaf2(config-router-bgp-pg)# timers 3 9

Leaf2(config-router-bgp-pg)# advertisement-interval 5

Leaf2(config-router-bgp-pg)# bfd

Leaf2(config-router-bgp-pg)# capability extended-nexthop

Leaf2(config-router-bgp-pg)# address-family ipv4 unicast

Leaf2(config-router-bgp-pg-af)# activate

Leaf2(config-router-bgp-pg-af)# exit

Leaf2(config-router-bgp-pg)# address-family l2vpn evpn

Leaf2(config-router-bgp-pg-af)# activate

Leaf2(config-router-bgp-pg-af)# exit

Leaf2(config-router-bgp-pg)# exit

! Note – do all 1/1 to 1/7 neighbors in this block (showing just first and last)

Leaf2(config-router-bgp)# neighbor interface Eth 1/1

Leaf2(config-router-bgp-neighbor)# description Link to Spine1

Leaf2(config-router-bgp-neighbor)# peer-group SPINES

Leaf2(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/2-1/7

Leaf2(config-router-bgp)# neighbor interface Eth 1/8

Leaf2(config-router-bgp-neighbor)# description Link to Spine1

Leaf2(config-router-bgp-neighbor)# peer-group SPINES

Leaf2(config-router-bgp-neighbor)# exit

Leaf2(config-router-bgp)# neighbor interface Eth 1/25

Leaf2(config-router-bgp-neighbor)# description Link to Spine1

Leaf2(config-router-bgp-neighbor)# peer-group SPINES

Leaf2(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/26-1/31

Leaf2(config-router-bgp)# neighbor interface Eth 1/32

Leaf2(config-router-bgp-neighbor)# description Link to Spine1

Leaf2(config-router-bgp-neighbor)# peer-group SPINES

Leaf2(config-router-bgp-neighbor)# exit

Leaf2(config-router-bgp)# neighbor interface Eth 1/33

Leaf2(config-router-bgp-neighbor)# description Link to Spine2

Leaf2(config-router-bgp-neighbor)# peer-group SPINES

Leaf2(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/34-1/39

Leaf2(config-router-bgp)# neighbor interface Eth 1/40

Leaf2(config-router-bgp-neighbor)# description Link to Spine2

Leaf2(config-router-bgp-neighbor)# peer-group SPINES

Leaf2(config-router-bgp-neighbor)# exit

Leaf2(config-router-bgp)# neighbor interface Eth 1/57

Leaf2(config-router-bgp-neighbor)# description Link to Spine2

Leaf2(config-router-bgp-neighbor)# peer-group SPINES

42 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf2(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/58-1/63

Leaf2(config-router-bgp)# neighbor interface Eth 1/64

Leaf2(config-router-bgp-neighbor)# description Link to Spine2

Leaf2(config-router-bgp-neighbor)# peer-group SPINES

Leaf2(config-router-bgp-neighbor)# exit

Leaf2(config-router-bgp)# exit

Leaf2(config)# router bgp 65102 vrf Corona

Leaf2(config-router-bgp)# address-family ipv4 unicast

Leaf2(config-router-bgp-af)# redistribute connected

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# address-family l2vpn evpn

Leaf2(config-router-bgp-af)# advertise ipv4 unicast

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# exit

Leaf2(config)# router bgp 65102 vrf Heineken

Leaf2(config-router-bgp)# address-family ipv4 unicast

Leaf2(config-router-bgp-af)# redistribute connected

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# address-family l2vpn evpn

Leaf2(config-router-bgp-af)# advertise ipv4 unicast

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# exit

Leaf2(config)# router bgp 65102 vrf Budweiser

Leaf2(config-router-bgp)# address-family ipv4 unicast

Leaf2(config-router-bgp-af)# redistribute connected

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# address-family l2vpn evpn

Leaf2(config-router-bgp-af)# advertise ipv4 unicast

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# exit

Leaf2(config)# exit

Leaf2# write memory

Leaf3

Leaf3# config terminal

Leaf3(config)# lldp enable

! Now we are ready to initialize all default RoCE buffers and QoS under a single command

Leaf3(config)# roce enable

! Assign source VXLAN and Router ID addresses to loopback interfaces

Leaf3(config)# interface loopback 0

Leaf3(config-if-lo0)# description Router-id

Leaf3(config-if-lo0)# ip address 100.64.3.3/32

Leaf3(config-if-lo0)# exit

43 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf3(config)# interface loopback 1

Leaf3(config-if-lo1)# description Vtep

Leaf3(config-if-lo1)# ip address 100.64.5.3/32

Leaf3(config-if-lo1)# exit

! Setup the Adaptive Routing and switching globals

Leaf3(config)# ars profile default

Leaf3(config-ars-profile)# exit

Leaf3(config)# ars bind default

Leaf3(config)# ars port-profile default

Leaf3(config-ars-port-profile)# enable

Leaf3(config-ars-port-profile)# exit

Leaf3(config)# ars object default

Leaf3(config-ars-object)# exit

Leaf3(config)# route-map ars-map permit 10

Leaf3(config-route-map)# set ars-object default

Leaf3(config-route-map)# exit

Leaf3(config)# ip protocol any route-map ars-map

Leaf3(config)# route-map RM_SET_SRC permit 10

Leaf3(config-route-map)# set ars-object default

Leaf3(config-route-map)# exit

! Setup uplink interfaces to Spine1

! Note – do all 1/1 to 1/7 in this block (showing just first and last)

Leaf3(config)# interface Eth 1/1

Leaf3(config-if-Eth1/1)# description Link to Spine1

Leaf3(config-if-Eth1/1)# speed 800000

Leaf3(config-if-Eth1/1)# unreliable-los auto

Leaf3(config-if-Eth1/1)# no shutdown

Leaf3(config-if-Eth1/1)# mtu 9100

Leaf3(config-if-Eth1/1)# ipv6 enable

Leaf3(config-if-Eth1/1)# ars bind default

Leaf3(config-if-Eth1/1)# exit

! Range of 7 links here 1/2-1/7

Leaf3(config)# interface Eth 1/8

Leaf3(config-if-Eth1/8)# description Link to Spine1

Leaf3(config-if-Eth1/8)# speed 800000

Leaf3(config-if-Eth1/8)# unreliable-los auto

Leaf3(config-if-Eth1/8)# no shutdown

Leaf3(config-if-Eth1/8)# mtu 9100

Leaf3(config-if-Eth1/8)# ipv6 enable

Leaf3(config-if-Eth1/8)# ars bind default

Leaf3(config-if-Eth1/8)# exit

! Now doing next block of uplinks to spine 1

! Note – do all 1/25 to 1/32 in this block (showing just first and last)

Leaf3(config)# interface Eth 1/25

44 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf3(config-if-Eth1/25)# description Link to Spine1

Leaf3(config-if-Eth1/25)# speed 800000

Leaf3(config-if-Eth1/25)# unreliable-los auto

Leaf3(config-if-Eth1/25)# no shutdown

Leaf3(config-if-Eth1/25)# mtu 9100

Leaf3(config-if-Eth1/25)# ipv6 enable

Leaf3(config-if-Eth1/25)# ars bind default

Leaf3(config-if-Eth1/25)# exit

! Range of 6 links here 1/26-1/31

Leaf3(config)# interface Eth 1/32

Leaf3(config-if-Eth1/32)# description Link to Spine1

Leaf3(config-if-Eth1/32)# speed 800000

Leaf3(config-if-Eth1/32)# unreliable-los auto

Leaf3(config-if-Eth1/32)# no shutdown

Leaf3(config-if-Eth1/32)# mtu 9100

Leaf3(config-if-Eth1/32)# ipv6 enable

Leaf3(config-if-Eth1/32)# ars bind default

Leaf3(config-if-Eth1/32)# exit

! Setup uplink interfaces to Spine2

! Note – do all 1/33 to 1/40 in this block (showing just first and last)

Leaf3(config)# interface Eth 1/33

Leaf3(config-if-Eth1/33)# description Link to Spine2

Leaf3(config-if-Eth1/33)# speed 800000

Leaf3(config-if-Eth1/33)# unreliable-los auto

Leaf3(config-if-Eth1/33)# no shutdown

Leaf3(config-if-Eth1/33)# mtu 9100

Leaf3(config-if-Eth1/33)# ipv6 enable

Leaf3(config-if-Eth1/33)# ars bind default

Leaf3(config-if-Eth1/33)# exit

! Range of 6 links here 1/34-1/39

Leaf3(config)# interface Eth 1/40

Leaf3(config-if-Eth1/40)# description Link to Spine2

Leaf3(config-if-Eth1/40)# speed 800000

Leaf3(config-if-Eth1/40)# unreliable-los auto

Leaf3(config-if-Eth1/40)# no shutdown

Leaf3(config-if-Eth1/40)# mtu 9100

Leaf3(config-if-Eth1/40)# ipv6 enable

Leaf3(config-if-Eth1/40)# ars bind default

Leaf3(config-if-Eth1/40)# exit

! Now doing next block of uplinks to spine 2

! Note – do all 1/57 to 1/64 in this block (showing just first and last)

Leaf3(config)# interface Eth 1/57

Leaf3(config-if-Eth1/57)# description Link to Spine2

Leaf3(config-if-Eth1/57)# speed 800000

45 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf3(config-if-Eth1/57)# unreliable-los auto

Leaf3(config-if-Eth1/57)# no shutdown

Leaf3(config-if-Eth1/57)# mtu 9100

Leaf3(config-if-Eth1/57)# ipv6 enable

Leaf3(config-if-Eth1/57)# ars bind default

Leaf3(config-if-Eth1/57)# exit

! Range of 6 links here 1/58-1/63

Leaf3(config)# interface Eth 1/64

Leaf3(config-if-Eth1/64)# description Link to Spine2

Leaf3(config-if-Eth1/64)# speed 800000

Leaf3(config-if-Eth1/64)# unreliable-los auto

Leaf3(config-if-Eth1/64)# no shutdown

Leaf3(config-if-Eth1/64)# mtu 9100

Leaf3(config-if-Eth1/64)# ipv6 enable

Leaf3(config-if-Eth1/64)# ars bind default

Leaf3(config-if-Eth1/64)# exit

! Create tenant VRFs for a multi-tenant environment (NOTE: Can just setup a single tenant/VRF only also)

Leaf3(config)# ip vrf Corona

! No nodes for Heineken here, but for future if needed

Leaf3(config)# ip vrf Heineken

Leaf3(config)# ip vrf Budweiser

! Assign /31 IP's to Corona's host interfaces Eth 1/9/1-1/24/2 (showing just first and last)

! SSE-8164 best practice to use inner 32 ports for hosts

Leaf3(config)# interface Eth 1/9/1

Leaf3(config-if-Eth1/9/1)# speed 400000

Leaf3(config-if-Eth1/9/1)# mtu 9100

Leaf3(config-if-Eth1/9/1)# fec RS

Leaf3(config-if-Eth1/9/1)# standalone-link-training

Leaf3(config-if-Eth1/9/1)# unreliable-los auto

Leaf3(config-if-Eth1/9/1)# no shutdown

Leaf3(config-if-Eth1/9/1)# ip address 100.65.0.128/31

Leaf3(config-if-Eth1/9/1)# description Link to Corona Node 9 RNIC Slot 1 with IP 100.65.0.129/31

Leaf3(config-if-Eth1/9/1)# ip vrf forwarding Corona

Leaf3(config-if-Eth1/9/1)# exit

! Range of 30 links here 1/9/2-1/24/1

Leaf3(config)# interface Eth 1/24/2

Leaf3(config-if-Eth1/24/2)# speed 400000

Leaf3(config-if-Eth1/24/2)# mtu 9100

Leaf3(config-if-Eth1/24/1)# fec RS

Leaf3(config-if-Eth1/24/1)# standalone-link-training

Leaf3(config-if-Eth1/24/1)# unreliable-los auto

Leaf3(config-if-Eth1/24/1)# no shutdown

Leaf3(config-if-Eth1/24/2)# ip address 100.65.0.190/31

Leaf3(config-if-Eth1/24/2)# description Link to Corona Node 12 RNIC Slot 8 with IP 100.65.0.191/31

46 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf3(config-if-Eth1/24/2)# ip vrf forwarding Corona

Leaf3(config-if-Eth1/24/2)# exit

! Assign /31 IP's to Budweiser host interfaces Eth 1/41/1-1/56/2 (showing just first and last)

Leaf3(config)# interface Eth 1/41/1

Leaf3(config-if-Eth1/41/1)# speed 400000

Leaf3(config-if-Eth1/41/1)# mtu 9100

Leaf3(config-if-Eth1/41/1)# fec RS

Leaf3(config-if-Eth1/41/1)# standalone-link-training

Leaf3(config-if-Eth1/41/1)# unreliable-los auto

Leaf3(config-if-Eth1/41/1)# no shutdown

Leaf3(config-if-Eth1/41/1)# ip address 100.67.0.0/31

Leaf3(config-if-Eth1/41/1)# description Link to Budweiser Node 1 RNIC Slot 1 with IP 100.67.0.1/31

Leaf3(config-if-Eth1/41/1)# ip vrf forwarding Budweiser

Leaf3(config-if-Eth1/41/1)# exit

! Range of 30 links here 1/41/2-1/56/1

Leaf3(config)# interface Eth 1/56/2

Leaf3(config-if-Eth1/56/2)# speed 400000

Leaf3(config-if-Eth1/56/2)# mtu 9100

Leaf3(config-if-Eth1/56/1)# fec RS

Leaf3(config-if-Eth1/56/1)# standalone-link-training

Leaf3(config-if-Eth1/56/1)# unreliable-los auto

Leaf3(config-if-Eth1/56/1)# no shutdown

Leaf3(config-if-Eth1/56/2)# ip address 100.67.0.62/31

Leaf3(config-if-Eth1/56/2)# description Link to Budweiser Node 4 RNIC Slot 8 with IP 100.67.0.63/31

Leaf3(config-if-Eth1/56/2)# ip vrf forwarding Budweiser

Leaf3(config-if-Eth1/56/2)# exit

! Configure L3 VNI VLANs

Leaf3(config)# interface Vlan 61

Leaf3(config-if-Vlan61)# ip vrf forwarding Corona

Leaf3(config-if-Vlan61)# exit

Leaf3(config)# interface Vlan 62

Leaf3(config-if-Vlan62)# ip vrf forwarding Heineken

Leaf3(config-if-Vlan62)# exit

Leaf3(config)# interface Vlan 63

Leaf3(config-if-Vlan63)# ip vrf forwarding Budweiser

Leaf3(config-if-Vlan63)# exit

! Map VNIs to VLANs and L3 VNIs to VRFs

Leaf3(config)# interface vxlan vtep-3

Leaf3(config-if-vxlan-vtep-3)# source-ip 100.64.5.3

Leaf3(config-if-vxlan-vtep-3)# map vni 610 vlan 61

Leaf3(config-if-vxlan-vtep-3)# map vni 620 vlan 62

Leaf3(config-if-vxlan-vtep-3)# map vni 630 vlan 63

Leaf3(config-if-vxlan-vtep-3)# map vni 610 vrf Corona

Leaf3(config-if-vxlan-vtep-3)# map vni 620 vrf Heineken

47 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf3(config-if-vxlan-vtep-3)# map vni 630 vrf Budweiser

Leaf3(config-if-vxlan-vtep-3)# qos-mode uniform

Leaf3(config-if-vxlan-vtep-3)# exit

! setup underlay and overlay BGP

Leaf3(config)# router bgp 65103

Leaf3(config-router-bgp)# router-id 100.64.3.3

Leaf3(config-router-bgp)# address-family ipv4 unicast

Leaf3(config-router-bgp-af)# redistribute connected

Leaf3(config-router-bgp-af)# maximum-paths 64

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# address-family l2vpn evpn

Leaf3(config-router-bgp-af)# advertise-all-vni

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# peer-group SPINES

Leaf3(config-router-bgp-pg)# remote-as external

Leaf3(config-router-bgp-pg)# timers 3 9

Leaf3(config-router-bgp-pg)# advertisement-interval 5

Leaf3(config-router-bgp-pg)# bfd

Leaf3(config-router-bgp-pg)# capability extended-nexthop

Leaf3(config-router-bgp-pg)# address-family ipv4 unicast

Leaf3(config-router-bgp-pg-af)# activate

Leaf3(config-router-bgp-pg-af)# exit

Leaf3(config-router-bgp-pg)# address-family l2vpn evpn

Leaf3(config-router-bgp-pg-af)# activate

Leaf3(config-router-bgp-pg-af)# exit

Leaf3(config-router-bgp-pg)# exit

! Note – do all 1/1 to 1/7 neighbors in this block (showing just first and last)

Leaf3(config-router-bgp)# neighbor interface Eth 1/1

Leaf3(config-router-bgp-neighbor)# description Link to Spine1

Leaf3(config-router-bgp-neighbor)# peer-group SPINES

Leaf3(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/2-1/7

Leaf3(config-router-bgp)# neighbor interface Eth 1/8

Leaf3(config-router-bgp-neighbor)# description Link to Spine1

Leaf3(config-router-bgp-neighbor)# peer-group SPINES

Leaf3(config-router-bgp-neighbor)# exit

Leaf3(config-router-bgp)# neighbor interface Eth 1/25

Leaf3(config-router-bgp-neighbor)# description Link to Spine1

Leaf3(config-router-bgp-neighbor)# peer-group SPINES

Leaf3(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/26-1/31

Leaf3(config-router-bgp)# neighbor interface Eth 1/32

Leaf3(config-router-bgp-neighbor)# description Link to Spine1

Leaf3(config-router-bgp-neighbor)# peer-group SPINES

48 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf3(config-router-bgp-neighbor)# exit

Leaf3(config-router-bgp)# neighbor interface Eth 1/33

Leaf3(config-router-bgp-neighbor)# description Link to Spine2

Leaf3(config-router-bgp-neighbor)# peer-group SPINES

Leaf3(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/34-1/39

Leaf3(config-router-bgp)# neighbor interface Eth 1/40

Leaf3(config-router-bgp-neighbor)# description Link to Spine2

Leaf3(config-router-bgp-neighbor)# peer-group SPINES

Leaf3(config-router-bgp-neighbor)# exit

Leaf3(config-router-bgp)# neighbor interface Eth 1/57

Leaf3(config-router-bgp-neighbor)# description Link to Spine2

Leaf3(config-router-bgp-neighbor)# peer-group SPINES

Leaf3(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/58-1/63

Leaf3(config-router-bgp)# neighbor interface Eth 1/64

Leaf3(config-router-bgp-neighbor)# description Link to Spine2

Leaf3(config-router-bgp-neighbor)# peer-group SPINES

Leaf3(config-router-bgp-neighbor)# exit

Leaf3(config-router-bgp)# exit

Leaf3(config)# router bgp 65103 vrf Corona

Leaf3(config-router-bgp)# address-family ipv4 unicast

Leaf3(config-router-bgp-af)# redistribute connected

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# address-family l2vpn evpn

Leaf3(config-router-bgp-af)# advertise ipv4 unicast

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# exit

Leaf3(config)# router bgp 65103 vrf Heineken

Leaf3(config-router-bgp)# address-family ipv4 unicast

Leaf3(config-router-bgp-af)# redistribute connected

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# address-family l2vpn evpn

Leaf3(config-router-bgp-af)# advertise ipv4 unicast

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# exit

Leaf3(config)# router bgp 65103 vrf Budweiser

Leaf3(config-router-bgp)# address-family ipv4 unicast

Leaf3(config-router-bgp-af)# redistribute connected

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# address-family l2vpn evpn

Leaf3(config-router-bgp-af)# advertise ipv4 unicast

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# exit

49 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf3(config)# exit

Leaf3# write memory

Leaf4

Leaf4# config terminal

Leaf4(config)# lldp enable

! Now we are ready to initialize all default RoCE buffers and QoS under a single command

Leaf4(config)# roce enable

! Assign source VXLAN and Router ID addresses to loopback interfaces

Leaf4(config)# interface loopback 0

Leaf4(config-if-lo0)# description Router-id

Leaf4(config-if-lo0)# ip address 100.64.3.4/32

Leaf4(config-if-lo0)# exit

Leaf4(config)# interface loopback 1

Leaf4(config-if-lo1)# description Vtep

Leaf4(config-if-lo1)# ip address 100.64.5.4/32

Leaf4(config-if-lo1)# exit

! Setup the Adaptive Routing and switching globals

Leaf4(config)# ars profile default

Leaf4(config-ars-profile)# exit

Leaf4(config)# ars bind default

Leaf4(config)# ars port-profile default

Leaf4(config-ars-port-profile)# enable

Leaf4(config-ars-port-profile)# exit

Leaf4(config)# ars object default

Leaf4(config-ars-object)# exit

Leaf4(config)# route-map ars-map permit 10

Leaf4(config-route-map)# set ars-object default

Leaf4(config-route-map)# exit

Leaf4(config)# ip protocol any route-map ars-map

Leaf4(config)# route-map RM_SET_SRC permit 10

Leaf4(config-route-map)# set ars-object default

Leaf4(config-route-map)# exit

! Setup uplink interfaces to Spine1

! Note – do all 1/1 to 1/7 in this block (showing just first and last)

Leaf4(config)# interface Eth 1/1

Leaf4(config-if-Eth1/1)# description Link to Spine1

Leaf4(config-if-Eth1/1)# speed 800000

Leaf4(config-if-Eth1/1)# unreliable-los auto

Leaf4(config-if-Eth1/1)# no shutdown

Leaf4(config-if-Eth1/1)# mtu 9100

Leaf4(config-if-Eth1/1)# ipv6 enable

Leaf4(config-if-Eth1/1)# ars bind default

Leaf4(config-if-Eth1/1)# exit

50 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

! Range of 6 links here 1/1-1/7

Leaf4(config)# interface Eth 1/8

Leaf4(config-if-Eth1/8)# description Link to Spine1

Leaf4(config-if-Eth1/8)# speed 800000

Leaf4(config-if-Eth1/8)# unreliable-los auto

Leaf4(config-if-Eth1/8)# no shutdown

Leaf4(config-if-Eth1/8)# mtu 9100

Leaf4(config-if-Eth1/8)# ipv6 enable

Leaf4(config-if-Eth1/7)# ars bind default

Leaf4(config-if-Eth1/7)# exit

! Now doing next block of uplinks to spine 1

! Note – do all 1/25 to 1/32 in this block (showing just first and last)

Leaf4(config)# interface Eth 1/25

Leaf4(config-if-Eth1/25)# description Link to Spine1

Leaf4(config-if-Eth1/25)# speed 800000

Leaf4(config-if-Eth1/25)# unreliable-los auto

Leaf4(config-if-Eth1/25)# no shutdown

Leaf4(config-if-Eth1/25)# mtu 9100

Leaf4(config-if-Eth1/25)# ipv6 enable

Leaf4(config-if-Eth1/25)# ars bind default

Leaf4(config-if-Eth1/25)# exit

! Range of 6 links here 1/26-1/31

Leaf4(config)# interface Eth 1/32

Leaf4(config-if-Eth1/32)# description Link to Spine1

Leaf4(config-if-Eth1/32)# speed 800000

Leaf4(config-if-Eth1/32)# unreliable-los auto

Leaf4(config-if-Eth1/32)# no shutdown

Leaf4(config-if-Eth1/32)# mtu 9100

Leaf4(config-if-Eth1/32)# ipv6 enable

Leaf4(config-if-Eth1/32)# ars bind default

Leaf4(config-if-Eth1/32)# exit

! Setup uplink interfaces to Spine2

! Note – do all 1/33 to 1/40 in this block (showing just first and last)

Leaf4(config)# interface Eth 1/33

Leaf4(config-if-Eth1/33)# description Link to Spine2

Leaf4(config-if-Eth1/33)# speed 800000

Leaf4(config-if-Eth1/33)# unreliable-los auto

Leaf4(config-if-Eth1/33)# no shutdown

Leaf4(config-if-Eth1/33)# mtu 9100

Leaf4(config-if-Eth1/33)# ipv6 enable

Leaf4(config-if-Eth1/33)# ars bind default

Leaf4(config-if-Eth1/33)# exit

! Range of 6 links here 1/34-1/39

Leaf4(config)# interface Eh 1/40

51 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf4(config-if-Eth1/40)# description Link to Spine2

Leaf4(config-if-Eth1/40)# speed 800000

Leaf4(config-if-Eth1/40)# unreliable-los auto

Leaf4(config-if-Eth1/40)# no shutdown

Leaf4(config-if-Eth1/40)# mtu 9100

Leaf4(config-if-Eth1/40)# ipv6 enable

Leaf4(config-if-Eth1/40)# ars bind default

Leaf4(config-if-Eth1/40)# exit

! Now doing next block of uplinks to spine 2

! Note – do all 1/57 to 1/64 in this block (showing just first and last)

Leaf4(config)# interface Eth 1/57

Leaf4(config-if-Eth1/57)# description Link to Spine2

Leaf4(config-if-Eth1/57)# speed 800000

Leaf4(config-if-Eth1/57)# unreliable-los auto

Leaf4(config-if-Eth1/57)# no shutdown

Leaf4(config-if-Eth1/57)# mtu 9100

Leaf4(config-if-Eth1/57)# ipv6 enable

Leaf4(config-if-Eth1/57)# ars bind default

Leaf4(config-if-Eth1/57)# exit

! Range of 6 links here 1/58-1/63

Leaf4(config)# interface Eth 1/64

Leaf4(config-if-Eth1/64)# description Link to Spine2

Leaf4(config-if-Eth1/64)# speed 800000

Leaf4(config-if-Eth1/64)# unreliable-los auto

Leaf4(config-if-Eth1/64)# no shutdown

Leaf4(config-if-Eth1/64)# mtu 9100

Leaf4(config-if-Eth1/64)# ipv6 enable

Leaf4(config-if-Eth1/64)# ars bind default

Leaf4(config-if-Eth1/64)# exit

! Create tenant VRFs for a multi-tenant environment (NOTE: Can just setup a single tenant/VRF only also)

Leaf4(config)# ip vrf Corona

! No nodes for Heineken here, but for future if needed

Leaf4(config)# ip vrf Heineken

Leaf4(config)# ip vrf Budweiser

! Assign /31 IP's to Corona's host interfaces Eth 1/9/1-1/24/2 (showing just first and last)

! SSE-8164 best practice to use inner 32 ports for hosts

Leaf4(config)# interface Eth 1/9/1

Leaf4(config-if-Eth1/9/1)# speed 400000

Leaf4(config-if-Eth1/9/1)# mtu 9100

Leaf4(config-if-Eth1/9/1)# fec RS

Leaf4(config-if-Eth1/9/1)# standalone-link-training

Leaf4(config-if-Eth1/9/1)# unreliable-los auto

Leaf4(config-if-Eth1/9/1)# no shutdown

Leaf4(config-if-Eth1/9/1)# ip address 100.65.0.192/31

52 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf4(config-if-Eth1/9/1)# description Link to Corona Node 13 RNIC Slot 1 with IP 100.65.0.193/31

Leaf4(config-if-Eth1/9/1)# ip vrf forwarding Corona

Leaf4(config-if-Eth1/9/1)# exit

! Range of 30 links here 1/9/2-1/24/1

Leaf4(config)# interface Eth 1/24/2

Leaf4(config-if-Eth1/24/2)# speed 400000

Leaf4(config-if-Eth1/24/2)# mtu 9100

Leaf4(config-if-Eth1/24/1)# fec RS

Leaf4(config-if-Eth1/24/1)# standalone-link-training

Leaf4(config-if-Eth1/24/1)# unreliable-los auto

Leaf4(config-if-Eth1/24/1)# no shutdown

Leaf4(config-if-Eth1/24/2)# ip address 100.65.0.254/31

Leaf4(config-if-Eth1/24/2)# description Link to Corona Node 16 RNIC Slot 8 with IP 100.65.0.255/31

Leaf4(config-if-Eth1/24/2)# ip vrf forwarding Corona

Leaf4(config-if-Eth1/24/2)# exit

! Assign /31 IP's to Budweiser host interfaces Eth 1/41/1-1/56/2 (showing just first and last)

Leaf4(config)# interface Eth 1/41/1

Leaf4(config-if-Eth1/41/1)# speed 400000

Leaf4(config-if-Eth1/41/1)# mtu 9100

Leaf4(config-if-Eth1/41/1)# fec RS

Leaf4(config-if-Eth1/41/1)# standalone-link-training

Leaf4(config-if-Eth1/41/1)# unreliable-los auto

Leaf4(config-if-Eth1/41/1)# no shutdown

Leaf4(config-if-Eth1/41/1)# ip address 100.67.0.64/31

Leaf4(config-if-Eth1/41/1)# description Link to Budweiser Node 5 RNIC Slot 1 with IP 100.67.0.65/31

Leaf4(config-if-Eth1/41/1)# ip vrf forwarding Budweiser

Leaf4(config-if-Eth1/41/1)# exit

! Range of 30 links here 1/41/2-1/56/1

Leaf4(config)# interface Eth 1/56/2

Leaf4(config-if-Eth1/56/2)# speed 400000

Leaf4(config-if-Eth1/56/2)# mtu 9100

Leaf4(config-if-Eth1/56/1)# fec RS

Leaf4(config-if-Eth1/56/1)# standalone-link-training

Leaf4(config-if-Eth1/56/1)# unreliable-los auto

Leaf4(config-if-Eth1/56/1)# no shutdown

Leaf4(config-if-Eth1/56/2)# ip address 100.67.0.126/31

Leaf4(config-if-Eth1/56/2)# description Link to Budweiser Node 8 RNIC Slot 8 with IP 100.67.0.127/31

Leaf4(config-if-Eth1/56/2)# ip vrf forwarding Budweiser

Leaf4(config-if-Eth1/56/2)# exit

! Configure L3 VNI VLANs

Leaf4(config)# interface Vlan 61

Leaf4(config-if-Vlan61)# ip vrf forwarding Corona

Leaf4(config-if-Vlan61)# exit

Leaf4(config)# interface Vlan 62

53 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf4(config-if-Vlan62)# ip vrf forwarding Heineken

Leaf4(config-if-Vlan62)# exit

Leaf4(config)# interface Vlan 63

Leaf4(config-if-Vlan63)# ip vrf forwarding Budweiser

Leaf4(config-if-Vlan63)# exit

! Map VNIs to VLANs and L3 VNIs to VRFs

Leaf4(config)# interface vxlan vtep-4

Leaf4(config-if-vxlan-vtep-4)# source-ip 100.64.5.4

Leaf4(config-if-vxlan-vtep-4)# map vni 610 vlan 61

Leaf4(config-if-vxlan-vtep-4)# map vni 620 vlan 62

Leaf4(config-if-vxlan-vtep-4)# map vni 630 vlan 63

Leaf4(config-if-vxlan-vtep-4)# map vni 610 vrf Corona

Leaf4(config-if-vxlan-vtep-4)# map vni 620 vrf Heineken

Leaf4(config-if-vxlan-vtep-4)# map vni 630 vrf Budweiser

Leaf4(config-if-vxlan-vtep-4)# qos-mode uniform

Leaf4(config-if-vxlan-vtep-4)# exit

! setup underlay and overlay BGP

Leaf4(config)# router bgp 65104

Leaf4(config-router-bgp)# router-id 100.64.3.4

Leaf4(config-router-bgp)# address-family ipv4 unicast

Leaf4(config-router-bgp-af)# redistribute connected

Leaf4(config-router-bgp-af)# maximum-paths 64

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# address-family l2vpn evpn

Leaf4(config-router-bgp-af)# advertise-all-vni

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# peer-group SPINES

Leaf4(config-router-bgp-pg)# remote-as external

Leaf4(config-router-bgp-pg)# timers 3 9

Leaf4(config-router-bgp-pg)# advertisement-interval 5

Leaf4(config-router-bgp-pg)# bfd

Leaf4(config-router-bgp-pg)# capability extended-nexthop

Leaf4(config-router-bgp-pg)# address-family ipv4 unicast

Leaf4(config-router-bgp-pg-af)# activate

Leaf4(config-router-bgp-pg-af)# exit

Leaf4(config-router-bgp-pg)# address-family l2vpn evpn

Leaf4(config-router-bgp-pg-af)# activate

Leaf4(config-router-bgp-pg-af)# exit

Leaf4(config-router-bgp-pg)# exit

! Note – do all 1/1 to 1/7 neighbors in this block (showing just first and last)

Leaf4(config-router-bgp)# neighbor interface Eth 1/1

Leaf4(config-router-bgp-neighbor)# description Link to Spine1

Leaf4(config-router-bgp-neighbor)# peer-group SPINES

Leaf4(config-router-bgp-neighbor)# exit

54 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

! Range of 6 links here 1/1-1/7

Leaf4(config-router-bgp)# neighbor interface Eth 1/8

Leaf4(config-router-bgp-neighbor)# description Link to Spine1

Leaf4(config-router-bgp-neighbor)# peer-group SPINES

Leaf4(config-router-bgp-neighbor)# exit

Leaf4(config-router-bgp)# neighbor interface Eth 1/25

Leaf4(config-router-bgp-neighbor)# description Link to Spine1

Leaf4(config-router-bgp-neighbor)# peer-group SPINES

Leaf4(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/26-1/31

Leaf4(config-router-bgp)# neighbor interface Eth 1/32

Leaf4(config-router-bgp-neighbor)# description Link to Spine1

Leaf4(config-router-bgp-neighbor)# peer-group SPINES

Leaf4(config-router-bgp-neighbor)# exit

Leaf4(config-router-bgp)# neighbor interface Eth 1/33

Leaf4(config-router-bgp-neighbor)# description Link to Spine2

Leaf4(config-router-bgp-neighbor)# peer-group SPINES

Leaf4(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/34-1/39

Leaf4(config-router-bgp)# neighbor interface Eth 1/40

Leaf4(config-router-bgp-neighbor)# description Link to Spine2

Leaf4(config-router-bgp-neighbor)# peer-group SPINES

Leaf4(config-router-bgp-neighbor)# exit

Leaf4(config-router-bgp)# neighbor interface Eth 1/57

Leaf4(config-router-bgp-neighbor)# description Link to Spine2

Leaf4(config-router-bgp-neighbor)# peer-group SPINES

Leaf4(config-router-bgp-neighbor)# exit

! Range of 6 links here 1/58-1/63

Leaf4(config-router-bgp)# neighbor interface Eth 1/64

Leaf4(config-router-bgp-neighbor)# description Link to Spine2

Leaf4(config-router-bgp-neighbor)# peer-group SPINES

Leaf4(config-router-bgp-neighbor)# exit

Leaf4(config-router-bgp)# exit

Leaf4(config)# router bgp 65104 vrf Corona

Leaf4(config-router-bgp)# address-family ipv4 unicast

Leaf4(config-router-bgp-af)# redistribute connected

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# address-family l2vpn evpn

Leaf4(config-router-bgp-af)# advertise ipv4 unicast

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# exit

Leaf4(config)# router bgp 65104 vrf Heineken

Leaf4(config-router-bgp)# address-family ipv4 unicast

Leaf4(config-router-bgp-af)# redistribute connected

55 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# address-family l2vpn evpn

Leaf4(config-router-bgp-af)# advertise ipv4 unicast

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# exit

Leaf4(config)# router bgp 65104 vrf Budweiser

Leaf4(config-router-bgp)# address-family ipv4 unicast

Leaf4(config-router-bgp-af)# redistribute connected

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# address-family l2vpn evpn

Leaf4(config-router-bgp-af)# advertise ipv4 unicast

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# exit

Leaf4(config)# exit

Leaf4# write memory

Spine1

Spine1# config terminal

Spine1(config)# lldp enable

! Now we are ready to initialize all default RoCE buffers and QoS under a single command

Spine1(config)# roce enable

! Assign Router ID addresses to loopback interface

Spine1(config)# interface loopback 0

Spine1(config-if-lo0)# description Router-id

Spine1(config-if-lo0)# ip address 100.64.1.1/32

Spine1(config-if-lo0)# exit

! Setup the Adaptive Routing and switching globals

Spine1(config)# ars profile default

Spine1(config-ars-profile)# exit

Spine1(config)# ars bind default

Spine1(config)# ars port-profile default

Spine1(config-ars-port-profile)# enable

Spine1(config-ars-port-profile)# exit

Spine1(config)# ars object default

Spine1(config-ars-object)# exit

Spine1(config)# route-map ars-map permit 10

Spine1(config-route-map)# set ars-object default

Spine1(config-route-map)# exit

Spine1(config)# ip protocol any route-map ars-map

Spine1(config)# route-map RM_SET_SRC permit 10

Spine1(config-route-map)# set ars-object default

Spine1(config-route-map)# exit

! Setup downlink interfaces to Leaf1

! Note – do all 1/1 to 1/16 in this block (showing just first and last)

56 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Spine1(config)# interface Eth 1/1

Spine1(config-if-Eth1)# description Link to Leaf1

Spine1(config-if-Eth1)# speed 800000

Spine1(config-if-Eth1)# unreliable-los auto

Spine1(config-if-Eth1)# no shutdown

Spine1(config-if-Eth1)# mtu 9100

Spine1(config-if-Eth1)# ipv6 enable

Spine1(config-if-Eth1)# ars bind default

Spine1(config-if-Eth1/1)# exit

! Range of 13 links here 1/2-1/15

Spine1(config)# interface Eth 1/16

Spine1(config-if-Eth1/16)# description Link to Leaf1

Spine1(config-if-Eth1/16)# speed 800000

Spine1(config-if-Eth1/16)# unreliable-los auto

Spine1(config-if-Eth1/16)# no shutdown

Spine1(config-if-Eth1/16)# mtu 9100

Spine1(config-if-Eth1/16)# ipv6 enable

Spine1(config-if-Eth1/16)# ars bind default

Spine1(config-if-Eth1/16)# exit

! Setup downlink interfaces to Leaf2

! Note – do all 1/17 to 1/32 in this block (showing just first and last)

Spine1(config)# interface Eth 1/17

Spine1(config-if-Eth1/17)# description Link to Leaf2

Spine1(config-if-Eth1/17)# speed 800000

Spine1(config-if-Eth1/17)# unreliable-los auto

Spine1(config-if-Eth1/17)# no shutdown

Spine1(config-if-Eth1/17)# mtu 9100

Spine1(config-if-Eth1/17)# ipv6 enable

Spine1(config-if-Eth1/17)# ars bind default

Spine1(config-if-Eth1/17)# exit

! Range of 13 links here 1/18-1/30

Spine1(config)# interface Eth 1/31

Spine1(config-if-Eth1/31)# description Link to Leaf2

Spine1(config-if-Eth1/31)# speed 800000

Spine1(config-if-Eth1/31)# unreliable-los auto

Spine1(config-if-Eth1/31)# no shutdown

Spine1(config-if-Eth1/31)# mtu 9100

Spine1(config-if-Eth1/31)# ipv6 enable

Spine1(config-if-Eth1/31)# ars bind default

Spine1(config-if-Eth1/31)# exit

! Setup downlink interfaces to Leaf3

! Note – do all 1/33 to 1/48 in this block (showing just first and last)

Spine1(config)# interface Eth 1/33

Spine1(config-if-Eth1/33)# description Link to Leaf3

57 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Spine1(config-if-Eth1/33)# speed 800000

Spine1(config-if-Eth1/33)# unreliable-los auto

Spine1(config-if-Eth1/33)# no shutdown

Spine1(config-if-Eth1/33)# mtu 9100

Spine1(config-if-Eth1/33)# ipv6 enable

Spine1(config-if-Eth1/33)# ars bind default

Spine1(config-if-Eth1/33)# exit

! Range of 13 links here 1/34-1/47

Spine1(config)# interface Eth 1/48

Spine1(config-if-Eth1/48)# description Link to Leaf3

Spine1(config-if-Eth1/48)# speed 800000

Spine1(config-if-Eth1/48)# unreliable-los auto

Spine1(config-if-Eth1/48)# no shutdown

Spine1(config-if-Eth1/48)# mtu 9100

Spine1(config-if-Eth1/48)# ipv6 enable

Spine1(config-if-Eth1/48)# ars bind default

Spine1(config-if-Eth1/48)# exit

! Setup downlink interfaces to Leaf4

! Note – do all 1/49 to 1/64 in this block (showing just first and last)

Spine1(config)# interface Eth 1/49

Spine1(config-if-Eth1/49)# description Link to Leaf4

Spine1(config-if-Eth1/49)# speed 800000

Spine1(config-if-Eth1/49)# unreliable-los auto

Spine1(config-if-Eth1/49)# no shutdown

Spine1(config-if-Eth1/49)# mtu 9100

Spine1(config-if-Eth1/49)# ipv6 enable

Spine1(config-if-Eth1/49)# ars bind default

Spine1(config-if-Eth1/49)# exit

! Range of 13 links here 1/50-1/63

Spine1(config)# interface Eth 1/64

Spine1(config-if-Eth1/64)# description Link to Leaf4

Spine1(config-if-Eth1/64)# speed 800000

Spine1(config-if-Eth1/64)# unreliable-los auto

Spine1(config-if-Eth1/64)# no shutdown

Spine1(config-if-Eth1/64)# mtu 9100

Spine1(config-if-Eth1/64)# ipv6 enable

Spine1(config-if-Eth1/64)# ars bind default

Spine1(config-if-Eth1/64)# exit

! Configure the underlay BGP

Spine1(config)# router bgp 65001

Spine1(config-router-bgp)# router-id 100.64.1.1

Spine1(config-router-bgp)# log-neighbor-changes

Spine1(config-router-bgp)# bestpath as-path multipath-relax

Spine1(config-router-bgp)# timers 60 180

58 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Spine1(config-router-bgp)# address-family ipv4 unicast

Spine1(config-router-bgp-af)# redistribute connected

Spine1(config-router-bgp-af)# maximum-paths 64

Spine1(config-router-bgp-af)# exit

Spine1(config-router-bgp)# peer-group LEAFS

Spine1(config-router-bgp-pg)# remote-as external

Spine1(config-router-bgp-pg)# timers 3 9

Spine1(config-router-bgp-pg)# advertisement-interval 5

Spine1(config-router-bgp-pg)# bfd

Spine1(config-router-bgp-pg)# capability extended-nexthop

Spine1(config-router-bgp-pg)# address-family ipv4 unicast

Spine1(config-router-bgp-pg-af)# activate

Spine1(config-router-bgp-pg-af)# exit

! Setup all BGP neighbor interfaces to all Leafs (Note- just showing start and last 2 per leaf here)

Spine1(config-router-bgp)# neighbor interface Eth 1/1

Spine1(config-router-bgp-neighbor)# description Link to Leaf1

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

! Range of 13 Neighbors here 1/2-1/15

Spine1(config-router-bgp)# neighbor interface Eth 1/16

Spine1(config-router-bgp-neighbor)# description Link to Leaf1

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

Spine1(config-router-bgp)# neighbor interface Eth 1/17

Spine1(config-router-bgp-neighbor)# description Link to Leaf2

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

! Range of 13 Neighbors here 1/18-1/31

Spine1(config-router-bgp)# neighbor interface Eth 1/32

Spine1(config-router-bgp-neighbor)# description Link to Leaf2

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

Spine1(config-router-bgp)# neighbor interface Eth 1/33

Spine1(config-router-bgp-neighbor)# description Link to Leaf3

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

! Range of 13 Neighbors here 1/34-1/47

Spine1(config-router-bgp)# neighbor interface Eth 1/48

Spine1(config-router-bgp-neighbor)# description Link to Leaf3

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

Spine1(config-router-bgp)# neighbor interface Eth 1/49

Spine1(config-router-bgp-neighbor)# description Link to Leaf4

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

59 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Spine1(config-router-bgp-neighbor)# exit

! Range of 13 Neighbors here 1/50-1/63

Spine1(config-router-bgp)# neighbor interface Eth 1/64

Spine1(config-router-bgp-neighbor)# description Link to Leaf4

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

Spine1(config-router-bgp)# exit

Spine1(config)# exit

Spine1# write memory

Spine2

Spine2# config terminal

Spine1(config)# lldp enable

! Now we are ready to initialize all default RoCE buffers and QoS under a single command

Spine2(config)# roce enable

! Assign Router ID addresses to loopback interface

Spine2(config)# interface loopback 0

Spine2(config-if-lo0)# description Router-id

Spine2(config-if-lo0)# ip address 100.64.1.2/32

Spine2(config-if-lo0)# exit

! Setup the Adaptive Routing and switching globals

Spine2(config)# ars profile default

Spine2(config-ars-profile)# exit

Spine2(config)# ars bind default

Spine2(config)# ars port-profile default

Spine2(config-ars-port-profile)# enable

Spine2(config-ars-port-profile)# exit

Spine2(config)# ars object default

Spine2(config-ars-object)# exit

Spine2(config)# route-map ars-map permit 10

Spine2(config-route-map)# set ars-object default

Spine2(config-route-map)# exit

Spine2(config)# ip protocol any route-map ars-map

Spine2(config)# route-map RM_SET_SRC permit 10

Spine2(config-route-map)# set ars-object default

Spine2(config-route-map)# exit

! Setup downlink interfaces to Leaf1

! Note – do all 1/1 to 1/16 in this block (showing just first and last)

Spine2(config)# interface Eth 1/1

Spine2(config-if-Eth1/1)# description Link to Leaf1

Spine2(config-if-Eth1/1)# speed 800000

Spine2(config-if-Eth1/1)# unreliable-los auto

Spine2(config-if-Eth1/1)# no shutdown

Spine2(config-if-Eth1/1)# mtu 9100

60 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Spine2(config-if-Eth1/1)# ipv6 enable

Spine2(config-if-Eth1/1)# ars bind default

Spine2(config-if-Eth1/1)# exit

! Range of 13 links here 1/2-1/15

Spine2(config)# interface Eth 1/16

Spine2(config-if-Eth1/16)# description Link to Leaf1

Spine2(config-if-Eth1/16)# speed 800000

Spine2(config-if-Eth1/16)# unreliable-los auto

Spine2(config-if-Eth1/16)# no shutdown

Spine2(config-if-Eth1/16)# mtu 9100

Spine2(config-if-Eth1/16)# ipv6 enable

Spine2(config-if-Eth1/16)# ars bind default

Spine2(config-if-Eth1/16)# exit

! Setup downlink interfaces to Leaf2

! Note – do all 1/17 to 1/32 in this block (showing just first and last)

Spine2(config)# interface Eth 1/17

Spine2(config-if-Eth1/17)# description Link to Leaf2

Spine2(config-if-Eth1/17)# speed 800000

Spine2(config-if-Eth1/17)# unreliable-los auto

Spine2(config-if-Eth1/17)# no shutdown

Spine2(config-if-Eth1/17)# mtu 9100

Spine2(config-if-Eth1/17)# ipv6 enable

Spine2(config-if-Eth1/17)# ars bind default

Spine2(config-if-Eth1/17)# exit

! Range of 13 links here 1/18-1/30

Spine2(config)# interface Eth 1/31

Spine2(config-if-Eth1/31)# description Link to Leaf2

Spine2(config-if-Eth1/31)# speed 800000

Spine2(config-if-Eth1/31)# unreliable-los auto

Spine2(config-if-Eth1/31)# no shutdown

Spine2(config-if-Eth1/31)# mtu 9100

Spine2(config-if-Eth1/31)# ipv6 enable

Spine2(config-if-Eth1/31)# ars bind default

Spine2(config-if-Eth1/31)# exit

! Setup downlink interfaces to Leaf3

! Note – do all 1/33 to 1/48 in this block (showing just first and last)

Spine2(config)# interface Eth 1/33

Spine2(config-if-Eth1/33)# description Link to Leaf3

Spine2(config-if-Eth1/33)# speed 800000

Spine2(config-if-Eth1/33)# unreliable-los auto

Spine2(config-if-Eth1/33)# no shutdown

Spine2(config-if-Eth1/33)# mtu 9100

Spine2(config-if-Eth1/33)# ipv6 enable

Spine2(config-if-Eth1/33)# ars bind default

61 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Spine2(config-if-Eth1/33)# exit

! Range of 13 links here 1/34-1/47

Spine2(config)# interface Eth 1/48

Spine2(config-if-Eth1/48)# description Link to Leaf3

Spine2(config-if-Eth1/48)# speed 800000

Spine2(config-if-Eth1/48)# unreliable-los auto

Spine2(config-if-Eth1/48)# no shutdown

Spine2(config-if-Eth1/48)# mtu 9100

Spine2(config-if-Eth1/48)# ipv6 enable

Spine2(config-if-Eth1/48)# ars bind default

Spine2(config-if-Eth1/48)# exit

! Setup downlink interfaces to Leaf4

! Note – do all 1/49 to 1/64 in this block (showing just first and last)

Spine2(config)# interface Eth 1/49

Spine2(config-if-Eth1/49)# description Link to Leaf4

Spine2(config-if-Eth1/49)# speed 800000

Spine2(config-if-Eth1/49)# unreliable-los auto

Spine2(config-if-Eth1/49)# no shutdown

Spine2(config-if-Eth1/49)# mtu 9100

Spine2(config-if-Eth1/49)# ipv6 enable

Spine2(config-if-Eth1/49)# ars bind default

Spine2(config-if-Eth1/49)# exit

! Range of 13 links here 1/50-1/63

Spine2(config)# interface Eth 1/64

Spine2(config-if-Eth1/64)# description Link to Leaf4

Spine2(config-if-Eth1/64)# speed 800000

Spine2(config-if-Eth1/64)# unreliable-los auto

Spine2(config-if-Eth1/64)# no shutdown

Spine2(config-if-Eth1/64)# mtu 9100

Spine2(config-if-Eth1/64)# ipv6 enable

Spine2(config-if-Eth1/64)# ars bind default

Spine2(config-if-Eth1/64)# exit

! Configure the underlay BGP

Spine2(config)# router bgp 65001

Spine2(config-router-bgp)# router-id 100.64.1.2

Spine2(config-router-bgp)# log-neighbor-changes

Spine2(config-router-bgp)# bestpath as-path multipath-relax

Spine2(config-router-bgp)# timers 60 180

Spine2(config-router-bgp)# address-family ipv4 unicast

Spine2(config-router-bgp-af)# redistribute connected

Spine2(config-router-bgp-af)# maximum-paths 64

Spine2(config-router-bgp-af)# exit

Spine2(config-router-bgp)# peer-group LEAFS

Spine2(config-router-bgp-pg)# remote-as external

62 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Spine2(config-router-bgp-pg)# timers 3 9

Spine2(config-router-bgp-pg)# advertisement-interval 5

Spine2(config-router-bgp-pg)# bfd

Spine2(config-router-bgp-pg)# capability extended-nexthop

Spine2(config-router-bgp-pg)# address-family ipv4 unicast

Spine2(config-router-bgp-pg-af)# activate

Spine2(config-router-bgp-pg-af)# exit

! Setup all BGP neighbor interfaces to all Leafs (Note- just showing start and last 2 per leaf here)

Spine2(config-router-bgp)# neighbor interface Eth 1/1

Spine2(config-router-bgp-neighbor)# description Link to Leaf1

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

! Range of 13 Neighbors here 1/2-1/15

Spine2(config-router-bgp)# neighbor interface Eth 1/16

Spine2(config-router-bgp-neighbor)# description Link to Leaf1

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

Spine2(config-router-bgp)# neighbor interface Eth 1/17

Spine2(config-router-bgp-neighbor)# description Link to Leaf2

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

! Range of 13 Neighbors here 1/18-1/31

Spine2(config-router-bgp)# neighbor interface Eth 1/32

Spine2(config-router-bgp-neighbor)# description Link to Leaf2

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

Spine2(config-router-bgp)# neighbor interface Eth 1/33

Spine2(config-router-bgp-neighbor)# description Link to Leaf3

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

! Range of 13 Neighbors here 1/34-1/47

Spine2(config-router-bgp)# neighbor interface Eth 1/48

Spine2(config-router-bgp-neighbor)# description Link to Leaf3

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

Spine2(config-router-bgp)# neighbor interface Eth 1/49

Spine2(config-router-bgp-neighbor)# description Link to Leaf4

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

! Range of 13 Neighbors here 1/50-1/63

Spine2(config-router-bgp)# neighbor interface Eth 1/64

Spine2(config-router-bgp-neighbor)# description Link to Leaf4

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

63 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Spine2(config-router-bgp)# exit

Spine2(config)# exit

Spine2# write memory

Appendix B: Detail on how the Switch QoS will be setup

DSCP Values from RNIC

When using the roce enable command on the switches in this cluster, the below configuration will be setup.

DSCP Value:

26 will be setup for the Supermicro AOC-S400G-B1C (BCM957608 aka Thor2) RoCEv2 traffic

¶ traffic-class 3, priority-group 3, queue 3, pfc-priority-group 3, pfc-priority-queue 3

24 will be setup in case customer wished to attach Nvidia CX7 or BF3 Adapters, or AMD Pollara in the MI GPU systems

¶ traffic-class 3, priority-group 3, queue 3, pfc-priority-group 3, pfc-priority-queue 3

DSCP 48 will be setup for CNP handling

¶ traffic-class 6, priority-group 7, queue 0, pfc-priority-group 0, pfc-priority-queue 0

Scheduler on all Switches

Switch scheduling policy for queues

0 will be dwrr with a weight of 50

3 will be dwrr with a weight of 50

6 will be strict

ECN Configuration on all Switches

ECN is ideally the first method for congestion signaling and control, whereas the PFC configuration is used as a last resort to

pause traffic and hop-by-hop backpressure to the sender. These settings are all assuming 400GE RNIC that are mapped 1:1 to

MI300X-MI355X GPU’s via internal PLX switch for optimized RDMA without any PCI-PCI bridges (i.e. switched on identical bus)

qos wred-policy is green ECN with min threshold of 1000k Bytes, max of 3000k Bytes, and a drop probability of 20%

For interfaces 200GE and below, we make the min/max/drop values to 500kB/1500kB/20%

Buffer Configuration on all Switches

On a switch which has both per port dedicated and global shared buffers, ingress traffic can still come in upon the act of

asserting a pause frame (IEEE 802.1x) to the device and the time the device actually pauses transmission. The size of buffers

for this purpose is called the headroom and is set below to ~2.6MB.

64 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

shared-headroom-size set to size/mode of 2621440/dynamic

On the switch silicon inside the SSE-T8164S the default internal buffer allocations are not user configurable but are

dynamically optimized when RoCEv2 is enabled on the switch, inclusive of accounting for the port speeds the traffic will

ingress/egress. The configuration of the PFC pause operation thresholds are also optimized – and any modification requires

expert level support – hence outside a discussion in this broader validated design document. Therefore, the internal sizing is

not exposed at the level of the configuration file.

Overall Default QoS Sections of larger running-configuration on all Switches

!

roce enable

!

qos map dscp-tc ROCE

dscp 0-3,5-23,25,27-47,49-63 traffic-class 0

dscp 24,26 traffic-class 3

dscp 4 traffic-class 3

dscp 48 traffic-class 6

!

qos map tc-queue ROCE

traffic-class 0 queue 0

traffic-class 1 queue 1

traffic-class 2 queue 2

traffic-class 3 queue 3

traffic-class 4 queue 4

traffic-class 5 queue 5

traffic-class 6 queue 6

traffic-class 7 queue 7

!

qos map tc-pg ROCE

traffic-class 3 priority-group 3

traffic-class 4 priority-group 4

traffic-class 0-2,4-7 priority-group 7

!

qos map pfc-priority-queue ROCE

pfc-priority 0 queue 0

pfc-priority 1 queue 1

pfc-priority 2 queue 2

pfc-priority 3 queue 3

pfc-priority 4 queue 4

pfc-priority 5 queue 5

pfc-priority 6 queue 6

pfc-priority 7 queue 7

!

qos wred-policy ROCE

65 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

green minimum-threshold 1000 maximum-threshold 3000 drop-probability 20

ecn green

!

qos scheduler-policy ROCE

!

queue 0

type dwrr

weight 50

!

queue 3

type dwrr

weight 50

!

queue 4

type dwrr

weight 50

!

queue 6

type strict

! Showing one sample interface on leaf 1

interface Ethernet1/9/1

mtu 9100

speed 400000

ip address 100.65.1.0/31

description Link to Corona Node RNIC with IP 100.65.1.1/31

ip vrf forwarding Corona

unreliable-los auto

no shutdown

queue 3 wred-policy ROCE

scheduler-policy ROCE

qos-map dscp-tc ROCE

qos-map tc-queue ROCE

qos-map tc-pg ROCE

qos-map pfc-priority-queue ROCE

priority-flow-control priority 3

priority-flow-control watchdog action drop

priority-flow-control watchdog on detect-time 200

priority-flow-control watchdog restore-time 400

!

66 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Appendix C: Connection maps to manage numbers of links

One important aspect of the deployment time is the interconnection of all these nodes, leafs, spines, and potentially

superspines for a given cluster. Below is a shortened list of the interconnections in this validated design, with suggested

labelling on the cables for ease in locating, replacing, troubleshooting, etc. as required. Ideally the tooling to perform the

cluster design, can also output a connection map like these below. If the installer focuses on the label columns, they can

place tags on the cable ends for simpler installation and any required operations later.

System to Leaf DAC Connection Map (with AOC-S400G-B1C in slots 1-8 on server)

Leaf Leaf
Port

Leaf End Cable
Label

Cable
Breakout
Port

RNIC
PCIe Slot

RNIC
Port

Node RNIC Port End
Cable Label

Type Length
(m)

1 9 L1P9-N1PCI1_2 1 1 1 1 N1PCI1-L1P9 DAC 2

1 9 2 2 1 1 N1PCI2-L1P9 DAC 2

ғΧҔ ғΧҔ ғΧҔ ғΧҔ ғΧҔ ғΧҔ ғΧҔ ғΧҔ ғΧҔ ғΧҔ

1 56 L1P56-N8PCI7_8 1 7 1 8 N8PCI7-L1P56 DAC 2

1 56 2 8 1 8 N8PCI8-L1P56 DAC 2

2 9 L2P9-N9PCI1_2 1 1 1 9 N9PCI1-L2P9 DAC 2

2 9 2 2 1 9 N9PCI2-L2P9 DAC 2

Entries continue per the leaf to node ports outlined in appendix a….

Leaf to Spine Fiber Connection Map

Leaf Leaf Port Leaf End Fiber Label Spine Spine Port Spine End Fiber Label Type Length (m)

1 1 L1P1-S1P1 1 1 S1P1-L1P1 VR8MMF 50

1 2 L1P2-S1P2 1 2 S1P2-L1P2 VR8MMF 50

ғΧҔ ғΧҔ ғΧҔ ғΧҔ ғΧҔ ғΧҔ ғΧҔ ғΧҔ

1 63 L1P63-S2P15 2 15 S2P15-L1P63 VR8MMF 50

1 64 L1P64-S2P16 2 16 S2P16-L1P64 VR8MMF 50

2 1 L2P1-S1P3 1 17 S1P17-L2P1 VR8MMF 50

2 2 L2P1-S1P4 1 18 S1P18-L2P2 VR8MMF 50

Entries continue per the uplink ports outlined in appendix a…

After installation is complete, assuming you have installed the lldp daemon on each node per appendix E, on each leaf you can

execute a ‘show lldp neighbor’ to confirm correct cabling in the entire cluster.

67 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Appendix D: Server and RNIC Configuration Steps

All servers are running Ubuntu 24.04

BIOS & Grub Settings

Supermicro recommended BIOS settings for the AS-8126GS-TNMR (MI325X):

Here we will present our settings that are based on AMD recommendations at the link below. We do recommend the reader

validate the entries below on that side, as sometimes recommendations are updated for a variety of reasons.

Link to AMD MI300X system documentation and steps (Identical settings to the MI325X-MI355X solution):

https://rocm.docs.amd.com/en/latest/how-to/system-optimization/mi300x.html#mi300x-bios-settings

Some keys from that more exhaustive link are shared here as key elements in the table below:
BIOS setting location Parameter Value Comments

Advanced / PCI subsystem

settings
Above 4G decoding Enabled GPU large BAR support.

Advanced / PCI subsystem

settings
SR-IOV support Enabled Enable single root IO virtualization.

AMD CBS / GPU common options Global C-state control Auto Global C-states – do not disable this menu item).

AMD CBS / GPU common options
CCD/Core/Thread

enablement
Accept May be necessary to enable the SMT control menu.

AMD CBS / GPU common options /

performance
SMT control Disable Set to Auto if the primary application is not compute-bound.

AMD CBS / DF common options /

memory addressing

NUMA nodes per

socket
Auto

Auto = NPS1. At this time, the other options for NUMA nodes per socket should

not be used.

AMD CBS / DF common options /

memory addressing
Memory interleaving Auto Depends on NUMA nodes (NPS) setting.

AMD CBS / DF common options /

link

4-link xGMI max

speed
32 Gbps

Auto results in the speed being set to the lower of the max speed the

motherboard is designed to support and the max speed of the CPU in use.

AMD CBS / NBIO common options IOMMU Enabled

AMD CBS / NBIO common options
PCIe ten bit tag

support
Auto

AMD CBS / NBIO common options

/ SMU common options
Determinism control Manual

AMD CBS / NBIO common options

/ SMU common options
Determinism slider Power

AMD CBS / NBIO common options

/ SMU common options
cTDP control Manual Set cTDP to the maximum supported by the installed CPU.

https://rocm.docs.amd.com/en/latest/how-to/system-optimization/mi300x.html#mi300x-bios-settings

68 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

BIOS setting location Parameter Value Comments

AMD CBS / NBIO common options

/ SMU common options
cTDP 400 Value in watts.

AMD CBS / NBIO common options

/ SMU common options

Package power limit

control
Manual Set package power limit to the maximum supported by the installed CPU.

AMD CBS / NBIO common options

/ SMU common options
Package power limit 400 Value in watts.

AMD CBS / NBIO common options

/ SMU common options

xGMI link width

control
Manual Set package power limit to the maximum supported by the installed CPU.

AMD CBS / NBIO common options

/ SMU common options

xGMI force width

control
Force

AMD CBS / NBIO common options

/ SMU common options
xGMI force link width 2

¶ 0: Force xGMI link width to x2

¶ 1: Force xGMI link width to x8

¶ 2: Force xGMI link width to x16

AMD CBS / NBIO common options

/ SMU common options
xGMI max speed Auto

Auto results in the speed being set to the lower of the max speed the

motherboard is designed to support and the max speed of the CPU in use.

AMD CBS / NBIO common options

/ SMU common options
APBDIS 1 Disable DF (data fabric) P-states

AMD CBS / NBIO common options

/ SMU common options
DF C-states Auto

AMD CBS / NBIO common options

/ SMU common options
Fixed SOC P-state P0

AMD CBS / security TSME Disabled Memory encryption

For the RNIC in this solution, these setting are also needed:

Advanced -> PCIe/PCI/PnP Configuration -> Link Configuration area, set:

¶ Operational Link Speed: 400Gbps PAM4-112

¶ Link FEC: RS544

¶ Port Link Training: Enabled

Finally, to ensure valid connectivity on the cluster, add in the LLDP processes to each node with: “sudo apt-get install lldpd”

Recommended GRUB customization

GRUB settings pulled from the link above:

In any modern Linux distribution, the /etc/default/grub file is used to configure GRUB. In this file, the string assigned to

GRUB_CMDLINE_LINUX is the command line parameters that Linux uses during boot.

It is recommended to append the following strings in GRUB_CMDLINE_LINUX.

69 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

pci=realloc=off

With this setting Linux is able to unambiguously detect all GPUs of the MI300X-MI355X system because this setting disables the

automatic reallocation of PCI resources. It’s used when Single Root I/O Virtualization (SR-IOV) Base Address Registers (BARs)

have not been allocated by the BIOS. This can help avoid potential issues with certain hardware configurations.

iommu=pt

The iommu=pt setting enables IOMMU pass-through mode. When in pass-through mode, the adapter does not need to use

DMA translation to the memory, which can improve performance.

IOMMU is a system specific IO mapping mechanism and can be used for DMA mapping and isolation. This can be beneficial for

virtualization and device assignment to virtual machines. It is recommended to enable IOMMU support.

For a system that has AMD host CPUs add this to GRUB_CMDLINE_LINUX:

iommu=pt

Update GRUB

Update GRUB to use the modified configuration:

sudo grub2-mkconfig -o /boot/grub2/grub.cfg

Ubuntu 24.04 PCI BDF & netplan on a sample host for tenant Corona on Leaf1

The default PCI locations for these MI300X-MI355X & 8 RNICs on the server (corona-node1 as example) are:

root@corona-node1:~# lspci | grep -i -E "nvme|mi300|eth"

Shows the MI300X at:

05:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

26:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

46:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

65:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

85:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

a6:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

c6:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

e5:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

Shows the single port 400G GPU RDMA NICs at:

06:00.0 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

27:00.0 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

47:00.0 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

66:00.0 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

86:00.0 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

70 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

a7:00.0 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

c7:00.0 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

e6:00.0 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

Shows the 2 port 200G Storage RDMA NICs at:

2f:00.0 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

2f:00.1 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

ce:00.0 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

ce:00.1 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

MI300X to RNIC RDMA Mapping:
MI300X Local
Rank

PCIe
Slot

PCIe Bus Device
Function

Assigned Ubuntu 24.04
Interface

IP Address
Assigned

Default
Gateway

1 1 06:00.0 ens11np0 10.65.0.1/31 10.65.0.0
2 2 27:00.0 ens21np0 10.65.0.3/31 10.65.0.2

3 3 47:00.0 ens31np0 10.65.0.5/31 10.65.0.4

4 4 66:00.0 ens41np0 10.65.0.7/31 10.65.0.6

5 5 86:00.0 ens51np0 10.65.0.9/31 10.65.0.8

6 6 a7:00.0 ens61np0 10.65.0.11/31 10.65.0.10

7 7 c7:00.0 ens71np0 10.65.0.13/31 10.65.0.12

8 8 e6:00.0 ens81np0 10.65.0.15/31 10.65.0.14

Shown below is the relevant portion of one systems Netplan. We will not include the bonding of the 2 10G inband

management interfaces, the setup on customer north-south network with DHCP and those switching elements, as those are

all very well understood and established in most customer environments. Here we will focus on the net new RNIC elements

within a given node.

Ideally tooling to configure the IP and subnetting on the leafs, will produce these netplan sections once the slot and

bus:device:function is determined from the lspci above (converting hex to decimal) for each RNIC in a standardized build, for

insertion into automated node provisioning toolsets to scale. Slots 1-8 have cables 2:1 to leaf1 ports Eth 1/9/1-1/12/2 (physical

800G OSFP ports 9-12 on the switch).

network:

 ethernets:

 ens11np0:

 addresses:

 - 100.65.0.1/31

 match:

 macaddress: 7c:c2:55:b9:d0:70

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

 routes:

 -to: 100.65.0.0/16

71 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

 via: 100.65.0.0

 set-name: ens11np0

 ens21np0:

 addresses:

 - 100.65.0.3/31

 match:

 macaddress: 7c:c2:55:b9:d1:90

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

 routes:

 -to: 100.65.0.0/16

 via: 100.65.0.2

 set-name: ens21np0

 ens31np0:

 addresses:

 - 100.65.0.5/31

 match:

 macaddress: 7c:c2:55:b9:d2:a0

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

 routes:

 -to: 100.65.0.0/16

 via: 100.65.0.4

 set-name: ens31np0

 ens41np0:

 addresses:

 - 100.65.0.7/31

 match:

 macaddress: 7c:c2:55:b9:d3:00

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

 routes:

72 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

 -to: 100.65.0.0/16

 via: 100.65.0.6

 set-name: ens41np0

 ens51np0:

 addresses:

 - 100.65.0.9/31

 match:

 macaddress: 7c:c2:55:b9:d4:70

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

 routes:

 -to: 100.65.0.0/16

 via: 100.65.0.8

 set-name: ens51np0

 ens61np0:

 addresses:

 - 100.65.0.11/31

 match:

 macaddress: 7c:c2:55:b9:d5:90

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

 routes:

 -to: 100.65.0.0/16

 via: 100.65.0.10

 set-name: ens61np0

 ens71np0:

 addresses:

 - 100.65.0.13/31

 match:

 macaddress: 7c:c2:55:b9:d6:a0

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

73 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

 routes:

 -to: 100.65.0.0/16

 via: 100.65.0.12

 set-name: ens71np0

 ens81np0:

 addresses:

 - 100.65.0.15/31

 match:

 macaddress: 7c:c2:55:b9:d7:00

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

 routes:

 -to: 100.65.0.0/16

 via: 100.65.0.14

 set-name: ens81np0

RNIC version 230.2.49.0, RoCE version 230.2.49.0, and ROCm version 6.4 on Ubuntu 24.04

Here we will present some of the key steps on the host to enable all the Thor2 RNIC components along with MI300X-MI355X

components with Ubuntu but we first point the reader to the authoritative source that is documentation from Broadcom

directly at the URL’s below:

Link to the documentation and steps: https://docs.broadcom.com/doc/957608-AN2XX

Link to the software drivers and utilities: https://docs.broadcom.com/docs/BCM5760X_SW_231.2.63.0

Link to adapter cable solutions guide: https://docs.broadcom.com/doc/957608-AN1XX

Link to adapter user guide: https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-

controllers/bcm957xxx/adapters/installation/connecting-the-network-cables/interconnect-compatibility-for-brcm9576xx-

adapters-.html#concept.dita_48749323-898e-47bf-963a-be55755df979

https://docs.broadcom.com/doc/957608-AN2XX
https://docs.broadcom.com/docs/BCM5760X_SW_231.2.63.0
https://docs.broadcom.com/doc/957608-AN1XX
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/installation/connecting-the-network-cables/interconnect-compatibility-for-brcm9576xx-adapters-.html#concept.dita_48749323-898e-47bf-963a-be55755df979
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/installation/connecting-the-network-cables/interconnect-compatibility-for-brcm9576xx-adapters-.html#concept.dita_48749323-898e-47bf-963a-be55755df979
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/installation/connecting-the-network-cables/interconnect-compatibility-for-brcm9576xx-adapters-.html#concept.dita_48749323-898e-47bf-963a-be55755df979

74 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Configuring RoCE Support

The NICs are default configured for RoCE/Peer Memory Direct. The following NVM CFG parameters control RoCE operation on

an NIC and can be verified using the NICCLI tool.

To check the option value:

sudo niccli -dev <index|pci b:d:f> getoption -name support_rdma -scope <pf number>

First highlighted item will change depending on the index or PCIe BDF or MAC

Second highlighted item will change depending on the PF

Example:

sudo niccli -dev 1 getoption -name support_rdma -scope 0

To enable the option:

sudo niccli -dev <index|pci b:d:f> setoption -name support_rdma -scope <pf number> -value 1

First highlighted item will change depending on the index or PCIe BDF or MAC

Second highlighted item will change depending on the PF

Example:

sudo niccli -dev 1 setoption -name support_rdma -scope 0 -value 1

Enable RoCE Performance Profile on the NIC

The default performance profile on the NICs is non-ROCE. The default profile is optimized for scenarios where the majority of

the traffic handled by the NIC is L2. If the NIC needs to handle a traffic mix where the RoCE traffic is greater than 50% of all

traffic (as would be the case for Peer Memory Direct), then the performance profile should be changed to RoCE.

To check the option value:

sudo niccli -dev <index | pci b:d:f | mac> getoption -name performance_profile

Highlighted item will change depending on the index or PCIe BDF or MAC

Example:

sudo niccli -dev 1 getoption -name performance_profile

To enable the option:

sudo niccli -dev <index|pci b:d:f> setoption -name performance_profile -value 1

Highlighted item will change depending on the index or PCIe BDF or MAC

#value 0: Default

#value 1: RoCE

Example:

sudo niccli -dev 1 setoption -name performance_profile -value 1

Enable PCIe Relaxed Ordering on the NIC

PCIe Relaxed ordering allows PCIe transactions to be completed out of order and results in a performance boost for

applications when enabled. However, care should be taken before Relaxed ordering is enabled as it can lead to data

corruption for some applications.

To check the option value:

sudo niccli -dev <index | pci b:d:f | mac> getoption -name pcie_relaxed_ordering

Highlighted item will change depending on the index or PCIe BDF or MAC

Example:

sudo niccli -dev 1 getoption -name pcie_relaxed_ordering

75 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

To enable the option:

sudo niccli -dev <index|pci b:d:f> setoption -name pcie_relaxed_ordering -value 1

Highlighted item will change depending on the index

Example:

sudo niccli -dev 1 setoption -name pcie_relaxed_ordering -value 1

Firmware Based DCBx NVM CFG on NIC

The Broadcom RoCE driver (bnxt_re) configures the QOS defaults for the NIC upon loading. However, if the firwmware based

DCBX or the FW-based LLDP is enabled via NVM CFG, the RoCE driver does not configure the QOS on the NIC interface.

NOTE: Firmware-based DCBX and FW-based LLDP should be disabled if the RoCE driver needs to configure the QOS for the

interface.

To check the option values:

sudo niccli -dev <index | pci b:d:f | mac> getoption -name dcbx_mode -scope <pf number>

First highlighted item will change depending on the index or PCIe BDF or MAC

Second highlighted item will change depending on the PF

Example:

sudo niccli -dev 1 getoption -name dcbx_mode -scope 0

sudo niccli -dev <index | pci b:d:f | mac> getoption -name lldp_nearest_bridge -scope <pf number>

First highlighted item will change depending on the index or PCIe BDF or MAC

Second highlighted item will change depending on the PF

Example:

sudo niccli -dev 1 getoption -name lldp_nearest_bridge -scope 0

sudo niccli -dev <index | pci b:d:f | mac> getoption -name lldp_nearest_non_tpmr_bridge -scope <pf number>

First highlighted item will change depending on the index or PCIe BDF or MAC

Second highlighted item will change depending on the PF

Example:

sudo niccli -dev 1 getoption -name lldp_nearest_non_tpmr_bridge -scope 0

To disable the options:

sudo niccli -dev <index | pci b:d:f | mac> setoption -name dcbx_mode -scope <pf number> -value 0

First highlighted item will change depending on the index or PCIe BDF or MAC

Second highlighted item will change depending on the PF

Example:

sudo niccli -dev 1 setoption -name dcbx_mode -scope 0 -value 0

sudo niccli -dev <index | pci b:d:f | mac> setoption -name lldp_nearest_bridge -scope <pf number> -value 0

First highlighted item will change depending on the index or PCIe BDF or MAC

Second highlighted item will change depending on the PF

Example:

sudo niccli -dev 1 getoption -name lldp_nearest_bridge -scope 0 -value 0

sudo niccli -dev <index | pci b:d:f | mac> setoption -name lldp_nearest_non_tpmr_bridge -scope <pf number> -value 0

First highlighted item will change depending on the index or PCIe BDF or MAC

Second highlighted item will change depending on the PF

76 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

Example:

sudo niccli -dev 1 getoption -name lldp_nearest_non_tpmr_bridge -scope 0 -value 0

QOS settings on the NIC

When the NIC is configured for RoCE on a host, the NIC is automatically configured for DCQCN-P along with the following

settings.

RoCE v2 packets are marked with a DSCP value of 26 and use Priority 3 internally

CNP packets are marked with a DSCP value of 48 and use Priority 7 internally

PFC is enabled for Priority 3 traffic

Three Traffic classes are set up, TC0 for non-RoCE traffic, TC1 for RoCE traffic, and TC2 for CNP traffic

RoCE and non-RoCE traffic share ETS bandwidth of 50% each. The ETS bandwidth share applies only when the actual traffic is

available to use the bandwidth share. In the absence of non-RoCE traffic, all the available bandwidth will be used by RoCE and

vice-versa.

CNP traffic is treated as ETS Strict Priority

sudo niccli -dev 1 get_qos

IEEE 8021QAZ ETS Configuration TLV:

PRIO_MAP: 0:0 1:0 2:0 3:1 4:0 5:0 6:0 7:2

TC Bandwidth: 50% 50% 0% 0% 0% 0% 0% 0%

TSA_MAP: 0:ets 1:ets 2:strict 3:strict 4:strict 5:strict 6:strict 7:strict

IEEE 8021QAZ PFC TLV:

PFC enabled: 3

IEEE 8021QAZ APP TLV:

APP#0:

Priority: 7

Sel: 5

DSCP: 48

APP#1:

Priority: 3

Sel: 5

DSCP: 26

APP#2:

Priority: 3

Sel: 3

UDP or DCCP: 4791

TC Rate Limit: 100% 100% 100% 0% 0% 0% 0% 0%

sudo niccli -dev 1 dump pri2cos

Base Queue is 0 for port 0.

Priority TC Queue ID

0 0 4

1 0 4

2 0 4

77 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

3 1 0

4 0 4

5 0 4

6 0 4

7 2 5

sudo niccli -dev 1 get_dscp2prio

dscp2prio mapping:

priority:7 dscp:48,

priority:3 dscp:26,

Broadcom provides tools NICCLI and bnxtsetupcc.sh that allow changing the DSCP values, the Priority values, the ETS settings

and the PFC settings.

NOTE: The important thing to note is that the settings on the NIC and the Ethernet switches match each other.

Section 2.7 BCM957608 Ethernet Networking Guide for AMD Instinct™ MI300X-MI355X GPU Clusters in the document lays out

the necessary checks that needs to be performed to verify thor2 NICs have been provision with the right settings. Here we

have captured the same with possible commands that can aid in this running this checklist just to highlight here.

Step 1 : Ensure the bnxt_en.ko, bnxt_re.ko, and ib_peer_mem.ko kernel modules are loaded and are the correct version

rmmod bnxt_re => remove the inbox driver (bnxt_re) if you need to

rmmod bnxt_en => remove the inbox driver (bnxt_re) if you need to

modprobe bnxt_en => install the new out of box bnxt_en

update-initramfs -u command for to update the kernel to use the new installed modules.

Step 2 : The AMD GPU driver amdgpu.ko is loaded

lsmod | grep amdgpu => to list the installed modules in the kernel and see if the amdgpu.ko is installed.

Step 3 : Appendix C in the document has the complete script to disable PCIe AXCS . This should be done every time the system

is restarted , hence this script needs to be part of the startup script.

Step 4 : check if IOMMU is disabled or is in Pass Through (PT) mode.

dmesg | grep -i iommu (line with “default domain….” Denotes it is passthrough mode.

Step 5 : check the following Standard InfiniBand Commands listed below work correctly.

 ibstatus

 ibv_devinfo -vvv

 ibv_devinfo –vvv -d < roce interface name>

Step 6 : NIC NVM Configuration (to enable RDMA, performance profile, and PCIe Relaxed Ordering) is set to enabled per above

 niccli –list

 niccli -i 1 nvm -getoption performance_profile

 2.2.5.4 => commands to enable the performance on the NICs for RoCE (by default it is set to non-RoCE)

 Sudo niccli – dev 1 nvm –setoption peformace_profle -value 1

 Need to reboot for them to take effect. They are persistent and need not be applied upon each reboot

Step 7 : to check if the link is up and at the correct speed

 Ibstatus

 Ethtool <if name>

Step 8 : An IP address is assigned to the NIC interface and the IP address is visible as GID 3 for IPV4 address or IPv6 address in

ibv_devinfo -vvv command below

78 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July 2025

 Rdma link show

 Ibv_devinfo -vvv

 Ibv_devinfo -vvv -d <roce_inft_name)

Step 9 : Interface MTU size is set to 9100 bytes on the host for maximum throughput

 Roce Max MTU is 4k , it should be set to a value more than 4K

Step 10 : The Ethernet switch port to which the NIC connects has its MTU set to 9100

Step 11 : The PCIe slot for the NIC shows correct PCIe GEN speed and width

 lspci -vvv -s <B:D:F>

Step 12 : Firewall is disabled on the communicating hosts, in case it prevents RDMA

 Should be good if the kernel level firewall utilities like iptables were not altered

Step 13 : Ensure there is no GPU/NIC related error

 dmsg | grep bnxt_en (and check if there are any error messages)

Step 14 : For RCCL testing, NUMA balancing is disabled on each host participating in the RCCL test

 echo 0 > /proc/sys/kernel/numa_balancing or sysctl -w kernel.numa_balancing=0

For More Information:
https://www.supermicro.com/en/products/networking

https://www.supermicro.com/en/products/aplus

SUPERMICRO

As a global leader in high performance, high efficiency server technology

and innovation, we develop and provide end-to-end green computing

solutions to the data center, cloud computing, enterprise IT, big data,
HPC, and embedded markets. Our Building Block Solutions® approach

allows us to provide a broad range of SKUs, and enables us to build and

deliver application-optimized solutions based upon your requirements.

BROADCOM

Broadcom Inc. (NASDAQ: AVGO) is a global technology leader that

designs, develops, and supplies a broad range of semiconductor,

enterprise software and security solutions. Broadcom's category-leading

product portfolio serves critical markets including cloud, data center,

networking, broadband, wireless, storage, industrial, and enterprise

software. Our solutions include service provider and enterprise
networking and storage, mobile device and broadband connectivity,

mainframe, cybersecurity, and private and hybrid cloud infrastructure.

Broadcom is a Delaware corporation headquartered in Palo Alto, CA. For

more information, go to www.broadcom.com

AMD

For more than 50 years AMD has driven innovation in high-performance

computing, graphics and visualization technologies. Billions of people,

leading Fortune 500 businesses and cutting-edge scientific research

institutions around the world rely on AMD technology daily to improve

how they live, work and play. AMD employees are focused on building

leadership high-performance and adaptive products that push the

boundaries of what is possible. For more information about how AMD is

enabling today and inspiring tomorrow, visit the AMD (NASDAQ: AMD)

website, www.amd.com

https://www.supermicro.com/en/products/networking
https://www.supermicro.com/en/products/aplus
http://www.broadcom.com/
http://www.amd.com/

