

1

 © Copyright Super Micro Computer, Inc July, 2025.

VALIDATED DESIGN

BUILDING A TENANT-AWARE AMD INSTINCT TM MI325X

GPU CLUSTER WITH AN INTEGRATED SUPERMICRO

SOLUTION
A Fully Validated Solution for Delivering Optimized Architecture for Providers
and Customers Building an Infrastructure with AMD InstinctTM MI325X GPUs,
AMD PensandoTM Pollara 400 AI NICs, and AMD EPYCTM CPUs

Executive Summary

Supermicro and AMD have partnered as trusted technology

leaders at the forefront of the data center industry. Together, we

provide optimal Total Cost of Ownership (TCO) solutions across

various domains, including Data Centers, AI, and HPC

applications. Supermicro and AMD deliver leading systems for

Generative AI through this strategic collaboration, working with

partners across the technology stack. Customers trust this

partnership for tested designs and solutions that simplify the

complexity of these deployments. The components in these AI

clusters deliver very high performance, with additional

considerations beyond speeds and feeds to allow for optimal

resource utilization in each solution.

This joint paper from Supermicro and AMD shares a pre-

validated GenAI solution that can be replicated, expanded,

shrunk, and operated in an optimal fashion. The scale of this

solution can easily be adjusted to various cluster sizes, from

TABLE OF CONTENTS
Executive Summary ... 1
Glossary of Terms .. 2

Foundations of AI Fabrics: RDMA, PCIe Switching, Ethernet, IP, and BGP

 ... 2
Validated Design Equipment and Configuration 9
Scaling out the Accelerators with an Optimized Ethernet Fabric –

Components and Configurations .. 10

Design of the Scale Unit - Scaling Out the Cluster 11
Supermicro Validated AMD Instinct MI325 Design: 4 Scale Units for 256

Instinct MI325X GPU... 16

Storage Network Validated Design ... 20
Importance of Automation of Fabric Configuration and Operations at

any scale .. 20
How to Minimize Deployment Time – L12 Rack Pre-Built Solution from

Supermicro .. 21

Summary ... 22
Appendix A: Accelerator Fabric Detailed Leaf and Spine Configuration

Steps .. 23
Appendix B: Detail on how the Switch QoS will be setup 42

Appendix C: Connection maps to manage numbers of links 45

Appendix D: Server and RNIC Configuration Steps 46

AMD Pensando Pollara RoCEv2 Configuration 52
For More Information:.. 60

2

 © Copyright Super Micro Computer, Inc July, 2025.

16/32/64/128 nodes up to a maximum of 1024 nodes with this validated design. This comprehensive full-stack solution can be

deployed at a customer site or acquired pre-built with already connected and configured elements, burned-in before shipping

for rapid deployment. The design is based on the AMD InstinctTM MI325X GPUs, AMD PensandoTM Pollara 400 AI NICs, and AMD

EPYCTM CPUs integrated with Supermicro optimized servers, with all network cabling and switching configured for optimal

performance upon delivery. This document addresses numerous design and engineering considerations to help readers

understand the key elements of this Supermicro and AMD collaboration.

Glossary of Terms

Accelerator The actual xPU performing calculations

SU Scale Unit

RCCL ROCm Collective Communications Library

Rail Optimized Locality relating to accelerator rank on a system

DLC Direct to chip Liquid Cooling

CDU Coolant Distribution Unit

SLURM Simple Linux Utility for Resource Management

NIC Network Interface Card

AOC Add On Card (Supermicro designation for NIC models)

RoCE RDMA over Converged Ethernet

RNIC RDMA-capable NIC

BIOS Basic Input/Output System

GRUB GNU Grand Unified Bootloader

PFC Per-priority Flow Control

ECN Explicit Congestion Notification

CNP Congestion Notification Packet

ARS Adaptive Routing and Switching

DLB Dynamic Load Balancing

UDP User Datagram Protocol

BGP Border Gateway Protocol

AS Autonomous System

PCIe Peripheral Component Interconnect Express

DSCP Differentiated Services Code Point

TC Traffic Class

PG Port Group

VRF Virtual Routing and Forwarding

EVPN Ethernet Virtual Private Network

VLAN Virtual Local Area Network

NVMe Non-Volatile Memory Express

ETS Enhanced Transmission Selection

MTBF Mean Time Between Failures

L12 Full Multi-Rack Level Solution Delivery

Foundations of AI Fabrics: RDMA, PCIe Switching, Ethernet, IP, and BGP

Traffic Characteristics within AI Training that Affect Fabric Design

In a typical AI training job, many sparse matrix calculations are performed on groups of accelerators within a larger cluster. This

grouping shares a subset of the job (i.e., the dataset is parallelized, the model parameters are too large for any single

accelerator to oversee, the parallelization occurs over time periods, and so on). During specific time periods, the accelerators

compute their subset of the job. Once they complete, all parallel members share results with each other (and must

3

 © Copyright Super Micro Computer, Inc July, 2025.

acknowledge receipt of all peers' updated information – known as tail latency) before starting the next iteration of that job step.

This data sharing between computation iterations causes large “elephant flows” to occur among those accelerators within that

subset of the parallel working cluster (not every accelerator in the entire cluster). To minimize the time spent waiting on

network I/O to complete, these types of cluster fabrics require lossless, low-latency, and predictable performance.

Characteristics of Elephant Flows on the Fabric

Examining traffic flows and load balancing on a cluster, we identify methods to allocate flows to links on a per-flow basis to

prevent the risk of out-of-order delivery. Vendors introduce mechanisms to optimize this with per-packet balancing for

improved utilization, if resources are available on the adapters to manage any out-of-order issues and reassemble the data for

delivery to the application via RDMA. In this validated design, we aim to achieve a balance between per-packet and per-flow

methods. When considering the large flows between accelerators during data exchange among that subset of parallel workers,

we notice variability in the data transported within many smaller time windows within that elephant flow.

Remote Direct Memory Access (RDMA), and RDMA over Converged Ethernet Version 2

Figure 1 - Remote Direct Memory Access (RDMA)

Remote Direct Memory Access allows traffic to bypass the kernel. It saves the bottleneck of traversing any PCIe/PCIe bridges (if

the RNIC and GPU connect on different bus/device/functions -i.e. B:D: F- or transiting CPU and IOMMU complexes) and

send/receive directly into the High Bandwidth Memory (HBM3 in our case) in the accelerator.

4

 © Copyright Super Micro Computer, Inc July, 2025.

Figure 2 - RoCE and RoCEv2 Packet Structure

The original RDMA over Converged Ethernet – RoCE – transported the InfiniBand higher-level headers in an Ethernet layer 2

transport. To expand the scale and traffic engineering options, the industry went towards RoCE version 2 – RoCEv2 – to allow

the encapsulation of those headers in a UDP/IP packet using a well-defined UDP port number of 4791.

Lossless Behavior, Congestion Avoidance, & Path Segmentation

The concepts of enabling lossless behavior and avoiding congestion on Ethernet involve a more extended discussion and

exceed the scope of this document. To help the reader grasp some key points throughout this document, we will discuss several

fundamental technology enablers essential for achieving lossless, low-latency, congestion-aware, and avoidance technology,

which must be present in today’s Ethernet fabrics.

Several core individual enablers exist to meet these goals, including Per-Priority Flow Control (PFC), as shown in Figure 4, which

allows traffic to be paused by class of service. Another key aspect of managing congestion to ensure lossless behavior is

depicted in Figure 3, where an Explicit Congestion Notification (ECN) is signaled by setting a Congestion Experienced (CE) value

in the DSCP portion of the IP header on these intermediate switches. This setting enables the receiver to inform the sender to

slow down, preventing traffic loss.

Figure 3 - Per-Priority Flow Control via Pause Frames Figure 4 - Explicit Congestion Notification via CNP

5

 © Copyright Super Micro Computer, Inc July, 2025.

This is further extended with optimized buffering within the switch itself, traffic classification and handling methods to properly

queue and schedule traffic, and present proper congestion avoidance mechanisms.

Figure 5 - View of Buffering, Classification, Queueing, and Scheduling in SSE-T8196S

The mechanisms to monitor, detect, and signal all of these are built into modern switching silicon and are already present in a

RoCEv2 aware network fabric. As we delve into the precise element configurations for these elements, you can refer to a general

representation for the shared buffering on the switch silicon.

Dynamic Load Balancing (DLB)

If we examine the flow, we see a distribution of traffic over a relatively long period at a high data rate. When we zoom in, there

are busy transport periods alongside gaps in time between them. Traditional ECMP only uses hashing load mechanisms over

multiple paths between endpoints by applying a “5-tuple” of header fields to select a path, which is optimized for the power of 2

link counts, and statically maps the entire flow for its entire duration to a single member link in a set of links. This can result in

some links being congested while others are relatively lightly loaded.

The hardware in this solution extends significantly by measuring recent traffic trends and future patterns through the depth of

queued traffic. This allows for the dynamic selection of ideal links to optimize flows at the overall flow level, while also

accounting for individual packets to prevent out-of-order delivery risks to the destination. Achieving this requires analyzing the

timing of end-to-end flows and identifying gaps within a given flow, enabling the movement of “flowlets” to dynamically link

members with lighter loads. This approach is known as DLB(In SONiC UI, it will refer to Adaptive Routing and Switching) and is

deployed in the underlying Tomahawk silicon found in the Ethernet switches of this design. These methods monitor congestion

on specific links and serve as inputs to other protocols, controlling traffic on alternative links for optimal path segmentation

and load balancing without necessitating more resource-intensive adapters on the hosts in the solutions.

Using Border Gateway Protocol (BGP) and Adaptive Routing and Switching (ARS) On the Fabric

Ethernet has employed Layer 2 mechanisms throughout its history (Spanning Tree and other more modern methods) to ensure

a loop-free path in the fabric for hosts to communicate. When a link or node fails, the directly connected device removes entries

6

 © Copyright Super Micro Computer, Inc July, 2025.

from the MAC tables associated with the failed pathway. Traditionally, timers needed to expire for elements in the fabric to seek

alternate paths (static routing). In addition to link or device failures, congestion scenarios were generally not addressed until

PFC, ETS, DCQCN with ECN, WRED, and others on the Ethernet fabric were introduced. Many end users now utilize approaches

like BGP routing, and the adaptive routing introduced with DLB to enhance recovery from both link and node failures while

effectively adapting to congested links. Users apply these and other techniques within the data center to implement more

active adjustments to the fabric. These mechanisms are highly effective at tracking and adjusting traffic patterns and re-

establishing pathways without human intervention. Figure 6 below illustrates an example of the topology (from a public paper

by Facebook) of an ideal BGP deployment for the scale and topology we will use. In this scenario, the leaf nodes advertise the

reachability of the connected systems to the spines (and other leaf nodes also) so that effective balancing can occur when

combined with information about link utilization and other metrics. With the EVPN type of BGP, we can interconnect multiple

leaf-spine fabrics to extend the size of the clusters and allow direct connectivity between nodes as needed with Ethernet Spine

and/or Super Spine Plane designs.

Figure 6 - BGP example from Meta for Ethernet Leaf-Spine architecture for maximum availability and traffic balancing

Hosting Multiple Lines of Business or Customers on a Virtualized Common Fabric for New Usage

Models

One extension we see increasingly deployed is for providers to offer accelerator services to multiple entities, internal and

external, to a company. Due to the perception of security isolation, early clusters were often built on a per-customer basis and

were fully dedicated to that specific business need. Over time, it has become evident that a layer of virtualization is required to

support multiple tenants (i.e., in cases where one tenant stops using services, goes out of business, or alters their resource

needs) in a dynamic manner—while ensuring tenant isolation and full performance that matches that of a completely dedicated

cluster. Many providers of accelerator services are grappling with how to offer services with minimized service length

obligations and the fastest time to bring their customers online as key business differentiators. The critical factor here is

achieving monetary break-even (and profit beyond that) points relative to the cost of dedicated clusters for each tenant under

what terms. Much like the rapid growth of cloud computing offerings surpassing Infrastructure as a Service (IaaS) by utilizing

virtualization and secure segmentation for compute, storage, network, security, and other components, a similar maturity in

virtualization and secure segmentation for accelerator offerings needs to develop and is included natively in this validated

design.

To that end, designs like the one shown in Figure 7 below are utilized to keep resources segmented even when deployed on a

common accelerator utility base. Ethernet and IP offer built-in mechanisms that are widely used in industry to achieve these

7

 © Copyright Super Micro Computer, Inc July, 2025.

goals and have often been deployed in large enterprises and cloud solutions. This validated design document includes the

topology to support this and some example schemas that can be deployed in real-world clusters today. Multiple methods exist

to share individual accelerators among tenant customers via host virtualization and other means. Still, for this design and the

scale of deployments we are exposed to, having granularity at the node level is most common, and this solution will assume

that level of granularity. If the provider builds capacity ahead of demand trends, they can offer some portion (or all, if they

buffer enough) on a very short lead time compared to the competition.

Figure 7 - BGP Sample Multi-Tenant Segmentation

 Managing Incremental Growth to the Accelerator Cluster

Collaborating with the previous discussion on building a shared cluster utility, which facilitates rapid onboarding, offboarding,

and adaptive business models for customers, there is frequently a goal of establishing just-in-time capacity or a limited set of

reserved resource buffers. As services are consumed, the buffer is depleted, and providers can replenish it to stay ahead of

demand. One way to scale is by replicating the dedicated clusters mentioned earlier; however, allowing tenants to scale

clusters without the limitations imposed by inter-cluster boundaries necessitates the creation of a consolidated set of new

resources to support seamless tenant growth. To achieve scalability, we must incorporate more service units (SUs) with nodes

and their connected leaves. We then require a method to distribute traffic evenly across the existing and newly added spines in

the design. If we “swing” some of the leaf uplinks from certain spines to the new spines, we may encounter challenges in

establishing new subnets, configuring routing, load balancing, and other issues. A key principle of this validated solution is to

utilize “BGP unnumbered” links, which eliminates the need for manual adjustments to any port IP or routing information. These

link movements do not require taking down the clusters; however, the bandwidth between the SUs would be halved when

reallocating a portion of those links to the new spines, as depicted in the red links in Figure 8 below. This process can be

performed during periods of low cluster usage (to minimize the impact of reduced bandwidth during expansion) as often as

necessary. Tools from Supermicro can assist engineering teams in creating detailed workflows to simplify this growth.

8

 © Copyright Super Micro Computer, Inc July, 2025.

Figure 8 - Doubling the solution cluster to a 64-node example

9

 © Copyright Super Micro Computer, Inc July, 2025.

Validated Design Equipment and Configuration

MI325X Server Utilized in a Validated Design

Figure 9 - Supermicro AS-8126GS-TNMR

Supermicro offers various server options compatible with many types of market accelerators, with Figure 9 above displaying

our air-cooled 8 AMD MI325X solution. One key upfront design requirement for these servers is to facilitate optimized RDMA

traffic with minimal distance, latency, and silicon between the RNIC and the accelerator. Below is a block diagram of the

system, presented to outline some key performance considerations that occur well before traffic enters the scale-out fabric.

Figure 10 - Block Diagram of AS-8126GS-TNMR

Figure 10 illustrates the direct connections on dedicated PCIe switches, ensuring that RDMA traffic is localized for each

accelerator. This DMA is also present from the accelerators to the local NVMe on the PLX switch for scratch drive usage, allowing

data transfers without going through the CPUs. The NIC kits displayed support for 10/25GE links to external storage devices. Our

validated design specifies 200GE storage access for each CPU to its connected accelerators, which minimizes inter-CPU

transfers. Additionally, in-band networks permit firewalled internet access for tasks such as Linux package operations, driver

updates, tenant access, etc. Note, the 1GE copper BMC access is not shown above.

10

 © Copyright Super Micro Computer, Inc July, 2025.

AMD InstinctTM MI300X & MI325X GPU Internal Fabric Basic View

Figure 11 - AMD InstinctTM MI300X & MI325X GPU Infinity FabricTM Technology

Figure 11 above gives a simple view of the internal links and the MI325X OAM. All accelerators are directly meshed for optimal

performance.

Scaling out the Accelerators with an Optimized Ethernet Fabric – Components and Configurations

AMD PensandoTM Pollara 400 Ethernet NIC for RoCEv2 Fabrics is shown below.

Figure 12 - AMD PensandoTM Pollara-1Q400P RNIC

The RDMA NIC (or just called RNIC here) is developed by AMD PensandoTM using their Pollara (Pollara-1Q400P) Silicon. This

PCIe Gen5 x16 adapter (standup PCIe in this SVD, but an AIOM for OCP 3.0 TSFF Mezzanine is also offered) is plugged into 8 LP

slots on the server above. These then have a direct set of 16 lanes of PCIe Gen5 to each accelerator.

11

 © Copyright Super Micro Computer, Inc July, 2025.

SSE-T8196 Ethernet Switch

Supermicro designs for AI networks are consistent across many of our partner accelerator solution vendors. Supermicro

designs, builds, and markets multiple 400GE and 800GE switches to support these designs. The foundational technical software

features and functionality deployed differ across other network vendor solutions, but Supermicro uses the industry standard

open Software for Open Networking in Cloud (SONiC). All the Ethernet features and functionality referenced in this paper are

included in SONiC. To gain more familiarity with SONiC, we encourage tutorials and the deployment of a virtual switch

environment. This document provides an optimized SONiC configuration for our example cluster. More customers and partners

are deploying Supermicro switches due to the short lead times, desire for a fully validated solution rack from fewer component

vendors inside, and the bench strength of all things AI that we provide. Brief overview below:

Figure 13 - Supermicro SSE-T8164 Ethernet Switch

The SMC SSE-T8196 Ethernet switch is the leaf in our AI network cluster design. In this design, Supermicro will use direct 400G

QSFP112 links to all Pollara instances in our AMD InstinctTM MI325X systems. Supermicro has similar designs for other

accelerator offerings, with a roadmap for regular updates to this and other designs. Please contact your Supermicro sales team

to learn more. Each AMD Instinct MI325X GPU is connected to an AMD Pensando Pollara 400G NIC interface on the system PCIe

fabric.

Design of the Scale Unit - Scaling Out the Cluster

All Direct Attached Copper Scale Unit Design

These designs are based on a fixed infrastructure unit that can scale out (SU) to accommodate a wide range of cluster sizes. The

leaf devices are positioned in the middle of one of the two racks for this validated design of an air-cooled 2-rack SU. If DLC is an

option, we can reduce the footprint to the center of the single rack that comprises this SU. Within this cluster are eight systems,

with each rack having a maximum estimated power of approximately 80kW for our MI325X in the 4U server design. The rationale

for the placement is to optimize the connectivity for copper connections while primarily reserving the more expensive fiber

connections for the leaf-spine connections. Figure 16 below illustrates the air-cooled version of the SU. The Switch and RNIC

depicted below feature an enhanced SERializer/DESerializer (SERDES), allowing a Direct Attached Copper (DAC) solution up to 4

meters in length. However, an important point to note is that for optimal performance, Supermicro recommends using the

inner half of the OSFP ports to connect to the RNICs on the systems and the outer ports for the spines.

12

 © Copyright Super Micro Computer, Inc July, 2025.

Figure 14 - Common DAC and Fiber leaf to RNIC Links for East-West Traffic

Figure 15 - Common DAC and Fiber Leaf to RNIC Links for North-South Storage Traffic

There are a few reasons to prefer passive copper for intra-SU links in this design, including:

• Cost (order of magnitude saved per link)

• Availability (500x increase in MTBF)

• Power (0.2W per link vs. typical 14-16W per optical link)

13

 © Copyright Super Micro Computer, Inc July, 2025.

Figure 16 - Supermicro Air Cooled AI SU with AMD Instinct MI300X/MI325X GPU Servers and Accelerator Fabric Switches

Figure 17 below illustrates the same SU design but becomes denser by implementing Direct Liquid Cooling for 8 hosts within a

single rack with CDU. The core system design now requires only 4RU to accommodate 8 MI300X/325X Accelerators, while

consistently performing alongside the air-cooled version of this SU.

Figure 17 - Supermicro DLC AI SU with AMD Instinct MI325X Servers and Accelerator Fabric Switches

The connections between the leaf and the eight systems comprise eight sets of OSFP 800G in 2x400G linked to a pair of QSFP112

400G on the NIC. The leaf-spine connections feature OSFP 800G each, as illustrated in Figure 18 below. To scale out the number

of systems in the cluster (the validated design depicted is a 32-system cluster for a 256 Accelerator cluster), we need to increase

the spine count and add more SU’s.

14

 © Copyright Super Micro Computer, Inc July, 2025.

Figure 18 - System to Leaf Links for Air Cooled or Liquid Cooled MI325X Systems

Resource Management and Adding Locality into Work Placement (SLURM and Topology Optimization
Including Concept of Rails)

As Figure 18 illustrates, all accelerators within the systems of a single SU connect to a single leaf. Availability considerations are

managed at the resource manager layer, where job steps are checkpointed. If any accelerator or node fails, the workload is

distributed among the surviving accelerators to resume from the last checkpoint. Consequently, the fabric has no inherent

node-level redundancy concept, as each accelerator is linked to a single RNIC. This feature results in the optimal design of one

leaf supporting eight systems in this configuration, utilizing a short copper cable.

One key consideration, however, is that if the resource manager controlling the job execution environment is unaware of the

fabric, only two levels of adjacency are available. Suppose the job or step runs on a parallel set of accelerators lower than the

count on a given system (eight accelerators in this solution). In that case, all collective communications are local to a single

node, and traffic never needs to leave that node. If the resource manager utilizes more accelerators, which are very common in

today’s models, the only other option would be to use the east-west (or back-end) fabric. The issue is that this fabric may have a

single silicon hop, three hops (leaf-spine-leaf), five hops (leaf-spine-superspine-spine-leaf), or even more if any of the switches

are modular chassis, which typically have multiple hops within a single node. This leads to the potential for significant

disparities in latencies for transporting collective communications, making these accelerators wait for a final data send (tail

latency) to ensure all workers are in sync before moving to the next computation iteration.

Various customers utilize custom and open-source tools to provide a level of locality and segmentation to minimize this issue.

Toolsets like the Simple Linux Utility for Resource Management (SLURM) are deployed in approximately 50% of today's

supercomputer installations, offering various methods to achieve this outcome. For this discussion, we will focus solely on

SLURM due to its open nature in describing the methods. One way to optimize flows is by using the immutable position of the

accelerator within a given system (known as that accelerator's rank) and designing the fabric so that all ranks within a Service

Unit (SU) connect to the same leaf. In this design, we will have a system of 64 accelerators, tightly controlling latency for

optimized performance with more than 8 accelerators while reducing the variability across the entire cluster. This method of

utilizing a rank is termed “rail-optimized,” where the set of local system ranks collectively form a rail (i.e., all 64 nodes ranked 1

connect to a leaf for rail 1). These rails then merge into the spine tier for all accelerators to communicate together; SLURM

ensures that workloads requiring fewer than 64 parallel members reside on that specific rail, keeping the rest of the fabric free

of that traffic. For users, there are command line arguments like “--gres=gpu:1” and “--nodelist=/pathtofile/su1.nodelist”

included in the sbatch commands to specify that rail within a particular SU.

Alternatives to Optimize Resource Management while Optimizing Connectivity

In these designs, however, having many nodes reach common leafs leads to lengthy cable runs, implying a need for fiber

connections as copper often becomes cost-prohibitive. In this validated design, we not only use copper for the many

15

 © Copyright Super Micro Computer, Inc July, 2025.

advantages mentioned earlier in this document but also localize a set of nodes and their accelerators into a group not based on

the rank of the accelerator on a node, but rather on all nodes and ranks under a given leaf. By not requiring many nodes to

connect to each rail, we can keep the advantage of predictable performance and a single stage. We can signal the SLURM to

treat the 8 nodes and 64 accelerators under a leaf as a single stage, not segmented by rank but by rack.

Suppose we utilize a Slurm topology/block plugin introduced in Slurm 23.11 and refined in 24.05. In that case, we can integrate

this rack optimization and adjacency into resource scheduling to reap the benefits of a rail-optimized design, specifically

implementing the rails at the rack or racks block level. The drawing below illustrates how this would appear for this validated

design.

Figure 19 - Slurm Topology/Block Plugin

16

 © Copyright Super Micro Computer, Inc July, 2025.

Supermicro Validated AMD Instinct MI325 Design: 4 Scale Units for 256 Instinct MI325X GPU

Figure 22 below illustrates the hardware layout of a 4 SU cluster interconnected by 2 spines. This 2-tier design assumes no over-

subscription on the fabric. Depending on the power footprint, the individual scale units can be either 1 or 2 racks, and this

design is highly adaptable, which we utilize in all our design scales. If we maintain the design constraint to a maximum of 2 tiers,

this solution with this product set can scale up to a maximum of 8k MI325X accelerators in the cluster shown below.

Figure 20 - Maximal 2 Tier Fabric Cluster for This Solution

If even higher scale numbers are needed, we can grow into a 3-tier topology using a superspine and retain full non-blocking

performance on the cluster as shown below. We can go even further if needed, but adding more superspine planes.

Figure 21 - Sample 3-Tier Fabric Cluster for this Solution (Can scale much higher)

17

 © Copyright Super Micro Computer, Inc July, 2025.

Handling Transient Flow Hashes on Fabric

When accelerators complete a given calculation as part of the overall training process and start the process of collective

communication to share its work, multiple large flows are established to the parallelized group of peers working together.

These flows we classify as elephant flows for large sizes, but they are not steady and constant per the DLB section of this

document. Flows will use a combination of initial hashing to determine links to use, which DLB optimizes for congestion based

on the flowlets discussed earlier. This can show transient bandwidth overlaps, where many links may be utilizing a higher

percentage of the bandwidth. Hence practitioners in the industry look at some alternative methods to account for these and

internal Supermicro research has resulted in a preference in this area. Figure 22 below shows some common alternatives, and a

method of using different bandwidths on the node to leaf, vs the leaf to spine, such that a lower percentage of these higher

utilized flows will run out of bandwidth before they complete rebalancing with DLB. This delays the utilization of PFC and ECN

signaling and results in overall better performance.

Figure 22 - Transients in Hashing and DLB adjustments

Grouping of Parallel Links from Leaf’s to Spine’s

There are multiple parallel links from each switch to each spine – and a network engineer may consider alternatives of a

portchannel of those links, or a set of parallel BGP unnumbered links to achieve this connectivity. When we just use Equal Cost

Multi-Pathing (ECMP) alone, often we desire a power of 2 on the number of spines such that the traffic can be evenly balanced

over these links. In variations of these validated designs (i.e. to add some odd number of SU’s, etc.) you would see cases where

numbers of spines and links are not always guaranteed to be a power of 2, and with traditional switching silicon this leads to

unbalanced flows (meaning some links can be carrying 2x the traffic of others). Also, with default ECMP only the entire flow is

hashed to a member link. Fortunately, the Broadcom Tomahawk 5 silicon has a modulo 16 hashing that can produce an even

set of probabilities over even non-power-of-2 links. While that helps, we can even go further with the deployment of Dynamic

Load Balancing (DLB) we talk to above. This is an adaptive routing implementation which is referred to as Adaptive Routing and

Switching (ARS) in the SONiC CLI. With this we not only get a per-flow hashing to any number of links and/or spines, but we also

go more granular than a per-flow has to a “per-flowlet” hash we talk to above. This provides an intermediate solution between

18

 © Copyright Super Micro Computer, Inc July, 2025.

per flow hashing (to guarantee in-order delivery on any RNIC) and per-packet hashing (needing to reconstitute the sprayed

packets on the receiving RNIC forcing more resource requirements on that RNIC) to allow for the per-flowlet hashing based on

RTT measurements such that we can spread a slow over parallel links and still achieve in-order delivery on standard RNICs. This

all results in a recommendation to not to a port channel from leafs to spines, rather do a parallel set of unnumbered BGP and let

the DLB perform this optimal action.

Figure 23 - 32 system 256 Accelerator design with 400G to each MI325X

Validated Design Architecture and Assumptions to Result in Detailed Configurations

• Example is for a 4 leaf, 2 spine cluster network (logic below can be scaled to much higher counts, however)

• Front end, north-south bonded interface pair (2x10GE) and its IP are not within the scope here as providers have well

established methods to assign to various tenants for their use – but we will generally call out the hostname which maps

to those IP’s as carona_node1 through _node16, heineken_node1 through _node8, and budweiser_node1 through

_node8

• Simple cluster fabric IP addressing illustrated (use 100.64.0.0/10 space RFC 7793 with 64+Tenant ID for 2nd Octet with

none set via DHCP nor in DNS as these are dedicated to back-end east-west cluster traffic

• Design supports 64 max tenants, max nodecount of 32,768 per tenant (can adjust boundaries for ratios of these)

• We don't summarize on leaf boundary if tenant nodes can be anywhere (but the general goal is to keep tenant nodes

together)

• Router-id's will be:

• 100.64.0.0/32-100.64.0.255/32 for super spines (256 max if 3-tier cluster)

• 100.64.1.0/32-100.64.2.255/32 for spines (512 max)

• 100.64.3.0/32-100.64.4.255/32 for leafs (512 max)

• vtep IP's will be on 100.64.5.0/32-100.64.6.255/32 on leafs (512 max)

• For ease of troubleshooting, I will just start above at base 1, however (i.e., leaf1, spine1)

19

 © Copyright Super Micro Computer, Inc July, 2025.

• Each GPU then has a /31 route in the cluster table, where the IPv4 route scale of almost 1M will fit

• All RNICs are assumed Pollara-400-1Q400P at 400GE

• In AI we run L3 to each RNIC on the hosts, with vrf segments per tenant

• all GPUs talk to each other via L3 only whether under a single leaf or multiple

• 3 Tenants numbered 1 and up - Corona, Heineken, and Budweiser with vrf names to match

• although this configuration and example will fully work with just 1 tenant, also

• IP subnets for tenants

• Corona subnets are of 100.65.0.0/31 and up

• Heineken subnets are of 100.66.0.0/31 and up

• Budweiser subnets are of 100.67.0.0/31 and up

• VLANs 61 (Corona), 62 (Heineken), 63 (Budweiser) are the tenant VLANs assigned for transport in the L3 VXLAN

(60+tenant ID)

• Corona has 128 Accelerators with 32 under each leaf, Heineken has 64 accelerators with 32 under leafs 1-2, and

Budweiser has 64 accelerators with 32 under leafs 3-4 (but with design, they could be spread anywhere on the cluster)

• Leaf1 has both Corona and Heineken on multiple interfaces (Eth 1/33-1/64 for Corona nodes, Eth 1/65-1/96 for

Heineken nodes), and these tenant nodes only see each other locally and over the entire fabric L3. Uplinks to Spine1

are Eth 1/1-1/16, while uplinks to Spine2 are Eth 1/17-1/32 all at 800G

• Leaf2 has both Corona and Heineken on multiple interfaces (Eth 1/33-1/64 for Corona nodes, Eth 1/65-1/96 for

Heineken nodes), and these tenant nodes only see each other locally and over the entire fabric L3. Uplinks to Spine1

are Eth 1/1-1/16, while uplinks to Spine2 are Eth 1/17-1/32 all at 800G

• Leaf3 has both Corona and Budweiser on multiple interfaces (Eth 1/33-1/64 for Corona nodes, Eth 1/65-1/96 for

Budweiser nodes), and these tenant nodes only see each other locally and over the entire fabric L3. Uplinks to Spine1

are Eth 1/1-1/16, while uplinks to Spine2 are Eth 1/17-1/32 all at 800G

• Leaf4 has both Corona and Budweiser on multiple interfaces (Eth 1/33-1/64 for Corona nodes, Eth 1/65-1/96 for Budweiser nodes),

and these tenant nodes only see each other locally and over the entire fabric L3. Uplinks to Spine1 are Eth 1/1-1/16, while uplinks to

Spine2 are Eth 1/17-1/32 all at 800G

Visual of the 3 Tenants on a virtualized GPU cloud service

Below is the simplified visual of the above example in this document:

Figure 24 - 3 Tenant View on Cluster

20

 © Copyright Super Micro Computer, Inc July, 2025.

Storage Network Validated Design

There are multiple alternatives in the storage portion of the cluster, with the goal of keeping up with the data to/from the

accelerators as they function. One possible solution is for the customer to use a file system that employs the NVMe that is

present on the AS-8126GS-TNMR, where the block diagram above shows the direct connection via the PLX switches.

While the SATA drives in slots 8 and 9 are ideal for the Ubuntu installation, the other 8 NVMe are optimized for parallel storage

that is placed next to the accelerator and allows RDMA to the storage directly. Some solutions also allow for an adjacent set of

flash local to each rack but to scale this we recommend a dedicated storage switch pair and Supermicro storage servers with a

suitable high-performance stack like Weka, DDN, Vast, or many other excellent products available. A software solution to

cluster this storage over the nodes that have tenant aware namespaces can be configured, and for extra security we could

employ VRF technology again on this portion of the cluster. In Figure 23 below we show the connectivity from a north-south

networking point of view.

Figure 25 - Storage Fabric and Targets

As an aside, these solutions will have 2 more networks connected in the cluster. Firstly, we have an out of band management

setup where 1GE Cat6 cable connects to the server BMC for routine setup and monitoring operation. It is on that connection we

do the BIOS configurations mentioned below. Another network is the “front end” or again north-south but for the in-band

access. This network connects as a redundant pair which in some cases is dedicated 10/25 GE that will have firewalled Internet

and/or VPN reachability for apt-get/wget/rpm/tenant access/etc. operations, but in many cases, it is collapsed onto the storage

network above. If that is the case, we would extend links to a set of border devices.

Importance of Automation of Fabric Configuration and Operations at any scale

If you look ahead to Appendix A with the device configuration for this relatively straightforward cluster of 4 leafs and 2 spines,

you will see the scale and detail in the configuration for an Ethernet fabric for these designs. As we are looking at deployments

that scale into 2/3/4 digits of switches and potentially tens of thousands of links – the probability of human error in many areas

mandate the need for automation:

• Producing detailed architectural drawings of the cluster for proper equipment ordering and builds

• Automated output of detailed cabling maps with labeling at each end of the cables for these infrastructure elements

from the RNICs to the leaf to the spine and perhaps even superspine to keep ahead of future operations

• Methods such as programmatic LLDP adjacency tests and/or IP Ping tests to validate proper cabling

• Methods for programmatic IP and BGP ASN assignment from a single source of truth database for the RNIC, switching,

storage, front end, BMC networks in a coordinated manner goes beyond today’s IPAM and DHCP capabilities

21

 © Copyright Super Micro Computer, Inc July, 2025.

• Automated methods for server BIOS policies, RNIC policies, and distribution of policy to endpoints on when to signal

interesting telemetry notifications and actions instead of polls and centralized processing of vast amounts of data

• Methods to coordinate QoS configurations of all elements in the infrastructure

• Methods to manage all device firmware lifecycle on all the constituent elements

• Automation of integrations of the topology with resource management tooling to provide efficient traffic management

• Performance optimization and acceptance testing along with diagnostic tooling from available telemetry

• Inventory Management

There are many more items on this list, and much activity in the industry for portions of the above. Many vendors including

Supermicro are working towards the goal to bring all these tighter together and expect announcements forthcoming as we are

all forced to tackle these tasks. Configuration of these elements from a centralized solution will relegate usage of individual

device CLI’s, API’s, Web Interfaces directly.

An upcoming paper sharing a new Supermicro controller product in this space will show how this and other validated designs

with multiple accelerator solutions can now be injected not only in the topology definition and deployment, but to include best

practice optimizations based on that specific validated solution. Once the equipment arrives onsite the installation and cabling

complete, the tooling can then validate the infrastructure and minimize the time to revenue. To make an even shorter-term

deployment possible, the next section on having fully built and tested rack level infrastructure delivered is included.

How to Minimize Deployment Time – L12 Rack Pre-Built Solution from Supermicro

Total Rack Scale Solution

Supermicro’s Rack Scale Solution Stack offers a fully integrated, end-to-end total solution that optimizes performance,

efficiency, and scalability for AI, cloud, and enterprise workloads. As a total solution provider, Supermicro removes the

complexity of multi-vendor integration by providing a pre-validated, high-density rack solution equipped with best-in-class

servers, storage, networking, and power management, ensuring seamless deployment and faster time-to-value. By leveraging

industry-leading energy efficiency, liquid and air-cooled designs, and global logistics capabilities, Supermicro delivers a cost-

effective and future-proof solution designed to meet the most demanding IT requirements. Customers gain from direct

manufacturer expertise, reduced operational overhead, and a single point of accountability, ensuring streamlined

procurement, deployment, and support experience that maximize ROI.

Figure 26 - Example Rack Solution Stack

22

 © Copyright Super Micro Computer, Inc July, 2025.

Onsite Deployment

Supermicro’s Onsite Deployment Services ensure a seamless, end-to-end installation of AI and High-Performance Computing

(HPC) clusters, accelerating time to production for enterprise applications, including LLMs, AI training, and mission-critical

workloads. Our dedicated deployment team manages rack installation, cabling, labeling, network configuration, and testing to

ensure optimal functionality and compliance with customer specifications. By leveraging Supermicro’s expertise and pre-

validated deployment processes, customers reduce downtime, integration risks, and operational overhead, allowing IT teams

to concentrate on performance tuning instead of infrastructure setup. With factory-trained professionals and global

deployment capabilities, Supermicro provides a turnkey, fully optimized rack solution that is ready to run, helping

organizations maximize efficiency, lower costs, and ensure long-term reliability.

Summary

This document provides an organized plan from start to finish that helps shorten the implementation time for clusters of

various sizes (with a focus on 32 nodes to illustrate detailed concepts) while delivering business value in the shortest time.

Additionally, further optimizations allow parts of the configuration and steps outlined here to be completed before the

equipment even arrives onsite, especially if you are performing the installation yourself. Alternatively, Supermicro rack services

can ensure the fastest time to value. Supermicro can share details of those possibilities in partnership with the organization

executing the project.

23

 © Copyright Super Micro Computer, Inc July, 2025.

Appendix A: Accelerator Fabric Detailed Leaf and Spine Configuration Steps

All Switches are running Enterprise Advanced 4.4.0 SONiC

Basic Starting Switch Preparation

To bootstrap the switches, you use a serial port (or USB to serial dongle) to access the console port and do the following steps

to lay the base for applying the real configuration to the devices in subsequent operations. The console port and access

defaults are below:

• 115,200 (8, N, 1)

• Default login: admin

• Default password: YourPaSsWoRd

• Disable ZTP using config ZTP disable -y

• Wait for ‘System Ready’

• Enter the industry standard command line interface using sonic-cli

• To set the management IP (an IP on your existing management switch):

o Leaf1# config terminal

o Leaf1(config)# ip vrf mgmt

o Leaf1(config)# username supermicro password testing123 role admin

o Leaf1(config)# interface management 0

o Leaf1(config-mgmt0)# ip address 10.1.1.101/24 gwaddr 10.1.1.1 <- your IP/subnet/dgw here

o Leaf1(config-mgmt0)# exit

o Leaf1(config)# exit

o Leaf1# write memory

• Connect the management RJ45 1GE port into your network for remote access without the console requirement going

forward

NOTE: All of the configuration examples below will be using an industry standard CLI that exists on the SSE-T8164S Supermicro

Enterprise Advanced SONiC as this is the simplest descriptive method used by network administrators today. Supermicro

highly recommends using some tooling to automate these configurations, where the built configurations are injected into the

switch via methods like ZTP, Ansible, Puppet, gNMI and gRPC, and other tooling out there. These greatly reduce the probability

of human error on data entry to these devices as we scale these solutions.

24

 © Copyright Super Micro Computer, Inc July, 2025.

Leaf1
Leaf1# config terminal

Leaf1(config)# lldp enable

! Now we are ready to initialize all default RoCE buffers and QoS under a single command

Leaf1(config)# roce enable

! Assign source VXLAN and Router ID addresses to loopback interfaces

Leaf1(config)# interface loopback 0

Leaf1(config-if-lo0)# description Router-id

Leaf1(config-if-lo0)# ip address 100.64.3.1/32

Leaf1(config-if-lo0)# exit

Leaf1(config)# interface loopback 1

Leaf1(config-if-lo1)# description Vtep

Leaf1(config-if-lo1)# ip address 100.64.5.1/32

Leaf1(config-if-lo1)# exit

! Setup the Adaptive Routing and switching globals

Leaf1(config)# ars profile default

Leaf1(config-ars-profile)# exit

Leaf1(config)# ars bind default

Leaf1(config)# ars port-profile default

Leaf1(config-ars-port-profile)# enable

Leaf1(config-ars-port-profile)# exit

Leaf1(config)# ars object default

Leaf1(config-ars-object)# exit

Leaf1(config)# route-map ars-map permit 10

Leaf1(config-route-map)# set ars-object default

Leaf1(config-route-map)# exit

Leaf1(config)# ip protocol any route-map ars-map

Leaf1(config)# route-map RM_SET_SRC permit 10

Leaf1(config-route-map)# set ars-object default

Leaf1(config-route-map)# exit

! Setup uplink interfaces to Spine1

! Note – do all 1/1, 1/2, etc. to 1/15, 1/16 in this block (showing just first and last)

Leaf1(config)# interface Eth 1/1

Leaf1(config-if-Eth1/1)# description Link to Spine1

Leaf1(config-if-Eth1/1)# speed 800000

Leaf1(config-if-Eth1/1)# unreliable-los auto

Leaf1(config-if-Eth1/1)# no shutdown

Leaf1(config-if-Eth1/1)# mtu 9100

Leaf1(config-if-Eth1/1)# ipv6 enable

Leaf1(config-if-Eth1/1)# ars bind default

Leaf1(config-if-Eth1/1)# exit

! Range of 14 links here 1/2-1/15

Leaf1(config)# interface Eth 1/16

Leaf1(config-if-Eth1/16)# description Link to Spine1

Leaf1(config-if-Eth1/16)# speed 800000

Leaf1(config-if-Eth1/16)# unreliable-los auto

Leaf1(config-if-Eth1/16)# no shutdown

Leaf1(config-if-Eth1/16)# mtu 9100

Leaf1(config-if-Eth1/16)# ipv6 enable

Leaf1(config-if-Eth1/16)# ars bind default

Leaf1(config-if-Eth1/16)# exit

! Setup uplink interfaces to Spine2

! Note – do all 1/17, 1/18, etc. to 1/31, 1/32 in this block (showing just first and last)

Leaf1(config)# interface Eth 1/17

Leaf1(config-if-Eth1/17)# description Link to Spine2

Leaf1(config-if-Eth1/17)# speed 800000

Leaf1(config-if-Eth1/17)# unreliable-los auto

Leaf1(config-if-Eth1/17)# no shutdown

Leaf1(config-if-Eth1/17)# mtu 9100

Leaf1(config-if-Eth1/17)# ipv6 enable

Leaf1(config-if-Eth1/17)# ars bind default

Leaf1(config-if-Eth1/17)# exit

! Range of 14 links here 1/18-1/31

Leaf1(config)# interface Eth 1/32

Leaf1(config-if-Eth1/32)# description Link to Spine2

Leaf1(config-if-Eth1/32)# speed 800000

Leaf1(config-if-Eth1/32)# unreliable-los auto

Leaf1(config-if-Eth1/32)# no shutdown

Leaf1(config-if-Eth1/32)# mtu 9100

Leaf1(config-if-Eth1/32)# ipv6 enable

Leaf1(config-if-Eth1/32)# ars bind default

Leaf1(config-if-Eth1/32)# exit

! Create tenant VRFs for a multi-tenant environment (NOTE: Can just setup a single tenant/VRF only also)

25

 © Copyright Super Micro Computer, Inc July, 2025.

Leaf1(config)# ip vrf Corona

Leaf1(config)# ip vrf Heineken

! No nodes for Budweiser here on leaf1, but for future if needed

Leaf1(config)# ip vrf Budweiser

! Assign /31 IP's to Corona's host interfaces Eth 1/33-1/64 (showing just first and last)

Leaf1(config)# interface Eth 1/33

Leaf1(config-if-Eth1/33)# speed 400000

Leaf1(config-if-Eth1/33)# mtu 9100

Leaf1(config-if-Eth1/33)# fec RS

Leaf1(config-if-Eth1/33)# standalone-link-training

Leaf1(config-if-Eth1/33)# unreliable-los auto

Leaf1(config-if-Eth1/33)# no shutdown

Leaf1(config-if-Eth1/33)# ip address 100.65.0.0/31

Leaf1(config-if-Eth1/33)# description Link to Corona Node 1 RNIC Slot 1 with IP 100.65.0.1/31

Leaf1(config-if-Eth1/33)# ip vrf forwarding Corona

Leaf1(config-if-Eth1/33)# exit

! Range of 30 links here 1/34-1/63

Leaf1(config)# interface Eth 1/64

Leaf1(config-if-Eth1/64)# speed 400000

Leaf1(config-if-Eth1/64)# mtu 9100

Leaf1(config-if-Eth1/64)# fec RS

Leaf1(config-if-Eth1/64)# standalone-link-training

Leaf1(config-if-Eth1/64)# unreliable-los auto

Leaf1(config-if-Eth1/64)# no shutdown

Leaf1(config-if-Eth1/64)# ip address 100.65.0.62/31

Leaf1(config-if-Eth1/64)# description Link to Corona Node 4 RNIC Slot 8 with IP 100.65.0.63/31

Leaf1(config-if-Eth1/64)# ip vrf forwarding Corona

Leaf1(config-if-Eth1/64)# exit

! Assign /31 IP's to Heineken's host interfaces Eth 1/65-1/96 (showing just first and last)

Leaf1(config)# interface Eth 1/65

Leaf1(config-if-Eth1/65)# speed 400000

Leaf1(config-if-Eth1/65)# mtu 9100

Leaf1(config-if-Eth1/65)# fec RS

Leaf1(config-if-Eth1/65)# standalone-link-training

Leaf1(config-if-Eth1/65)# unreliable-los auto

Leaf1(config-if-Eth1/65)# no shutdown

Leaf1(config-if-Eth1/65)# ip address 100.66.0.0/31

Leaf1(config-if-Eth1/65)# description Link to Heineken Node 1 RNIC Slot 1 with IP 100.66.0.1/31

Leaf1(config-if-Eth1/65)# ip vrf forwarding Heineken

Leaf1(config-if-Eth1/65)# exit

! Range of 30 links here 1/66-1/95

Leaf1(config)# interface Eth 1/96

Leaf1(config-if-Eth1/96)# speed 400000

Leaf1(config-if-Eth1/96)# mtu 9100

Leaf1(config-if-Eth1/96)# fec RS

Leaf1(config-if-Eth1/96)# standalone-link-training

Leaf1(config-if-Eth1/96)# unreliable-los auto

Leaf1(config-if-Eth1/96)# no shutdown

Leaf1(config-if-Eth1/96)# ip address 100.66.0.62/31

Leaf1(config-if-Eth1/96)# description Link to Heineken Node 4 RNIC Slot 8 with IP 100.66.0.63/31

Leaf1(config-if-Eth1/96)# ip vrf forwarding Heineken

Leaf1(config-if-Eth1/96)# exit

! Configure L3 VNI VLANs

Leaf1(config)# interface Vlan 61

Leaf1(config-if-Vlan61)# ip vrf forwarding Corona

Leaf1(config-if-Vlan61)# exit

Leaf1(config)# interface Vlan 62

Leaf1(config-if-Vlan62)# ip vrf forwarding Heineken

Leaf1(config-if-Vlan62)# exit

Leaf1(config)# interface Vlan 63

Leaf1(config-if-Vlan63)# ip vrf forwarding Budweiser

Leaf1(config-if-Vlan63)# exit

! Map VNIs to VLANs and L3 VNIs to VRFs

Leaf1(config)# interface vxlan vtep-1

Leaf1(config-if-vxlan-vtep-1)# source-ip 100.64.5.1

Leaf1(config-if-vxlan-vtep-1)# map vni 610 vlan 61

Leaf1(config-if-vxlan-vtep-1)# map vni 620 vlan 62

Leaf1(config-if-vxlan-vtep-1)# map vni 630 vlan 63

Leaf1(config-if-vxlan-vtep-1)# map vni 610 vrf Corona

Leaf1(config-if-vxlan-vtep-1)# map vni 620 vrf Heineken

Leaf1(config-if-vxlan-vtep-1)# map vni 630 vrf Budweiser

Leaf1(config-if-vxlan-vtep-1)# qos-mode uniform

Leaf1(config-if-vxlan-vtep-1)# exit

26

 © Copyright Super Micro Computer, Inc July, 2025.

! setup underlay and overlay BGP

Leaf1(config)# router bgp 65101

Leaf1(config-router-bgp)# router-id 100.64.3.1

Leaf1(config-router-bgp)# address-family ipv4 unicast

Leaf1(config-router-bgp-af)# redistribute connected

Leaf1(config-router-bgp-af)# maximum-paths 64

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# address-family l2vpn evpn

Leaf1(config-router-bgp-af)# advertise-all-vni

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# peer-group SPINES

Leaf1(config-router-bgp-pg)# remote-as external

Leaf1(config-router-bgp-pg)# timers 3 9

Leaf1(config-router-bgp-pg)# advertisement-interval 5

Leaf1(config-router-bgp-pg)# bfd

Leaf1(config-router-bgp-pg)# capability extended-nexthop

Leaf1(config-router-bgp-pg)# address-family ipv4 unicast

Leaf1(config-router-bgp-pg-af)# activate

Leaf1(config-router-bgp-pg-af)# exit

Leaf1(config-router-bgp-pg)# address-family l2vpn evpn

Leaf1(config-router-bgp-pg-af)# activate

Leaf1(config-router-bgp-pg-af)# exit

Leaf1(config-router-bgp-pg)# exit

! Note – do all 1/1, 1/2, etc. to 1/15, 1/16 neighbors in this block (showing just first and last)

Leaf1(config-router-bgp)# neighbor interface Eth 1/1

Leaf1(config-router-bgp-neighbor)# description Link to Spine1

Leaf1(config-router-bgp-neighbor)# peer-group SPINES

Leaf1(config-router-bgp-neighbor)# exit

! Range of 14 links here 1/2-1/15

Leaf1(config-router-bgp)# neighbor interface Eth 1/16

Leaf1(config-router-bgp-neighbor)# description Link to Spine1

Leaf1(config-router-bgp-neighbor)# peer-group SPINES

Leaf1(config-router-bgp-neighbor)# exit

! Note – do all 1/17, 1/18, etc. to 1/31, 1/32 neighbors in this block (showing just first and last)

Leaf1(config-router-bgp)# neighbor interface Eth 1/17

Leaf1(config-router-bgp-neighbor)# description Link to Spine2

Leaf1(config-router-bgp-neighbor)# peer-group SPINES

Leaf1(config-router-bgp-neighbor)# exit

! Range of 14 links here 1/18-1/31

Leaf1(config-router-bgp)# neighbor interface Eth 1/32

Leaf1(config-router-bgp-neighbor)# description Link to Spine2

Leaf1(config-router-bgp-neighbor)# peer-group SPINES

Leaf1(config-router-bgp-neighbor)# exit

Leaf1(config-router-bgp)# exit

Leaf1(config)# router bgp 65101 vrf Corona

Leaf1(config-router-bgp)# address-family ipv4 unicast

Leaf1(config-router-bgp-af)# redistribute connected

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# address-family l2vpn evpn

Leaf1(config-router-bgp-af)# advertise ipv4 unicast

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# exit

Leaf1(config)# router bgp 65101 vrf Heineken

Leaf1(config-router-bgp)# address-family ipv4 unicast

Leaf1(config-router-bgp-af)# redistribute connected

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# address-family l2vpn evpn

Leaf1(config-router-bgp-af)# advertise ipv4 unicast

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# exit

Leaf1(config)# router bgp 65101 vrf Budweiser

Leaf1(config-router-bgp)# address-family ipv4 unicast

Leaf1(config-router-bgp-af)# redistribute connected

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# address-family l2vpn evpn

Leaf1(config-router-bgp-af)# advertise ipv4 unicast

Leaf1(config-router-bgp-af)# exit

Leaf1(config-router-bgp)# exit

Leaf1(config)# exit

Leaf1# write memory

27

 © Copyright Super Micro Computer, Inc July, 2025.

Leaf2
Leaf1# config terminal

Leaf2(config)# lldp enable

! Now we are ready to initialize all default RoCE buffers and QoS under a single command

Leaf2(config)# roce enable

! Assign source VXLAN and Router ID addresses to loopback interfaces

Leaf2(config)# interface loopback 0

Leaf2(config-if-lo0)# description Router-id

Leaf2(config-if-lo0)# ip address 100.64.3.2/32

Leaf2(config-if-lo0)# exit

Leaf2(config)# interface loopback 1

Leaf2(config-if-lo1)# description Vtep

Leaf2(config-if-lo1)# ip address 100.64.5.2/32

Leaf2(config-if-lo1)# exit

! Setup the Adaptive Routing and switching globals

Leaf2(config)# ars profile default

Leaf2(config-ars-profile)# exit

Leaf2(config)# ars bind default

Leaf2(config)# ars port-profile default

Leaf2(config-ars-port-profile)# enable

Leaf2(config-ars-port-profile)# exit

Leaf2(config)# ars object default

Leaf2(config-ars-object)# exit

Leaf2(config)# route-map ars-map permit 10

Leaf2(config-route-map)# set ars-object default

Leaf2(config-route-map)# exit

Leaf2(config)# ip protocol any route-map ars-map

Leaf2(config)# route-map RM_SET_SRC permit 10

Leaf2(config-route-map)# set ars-object default

Leaf2(config-route-map)# exit

! Setup uplink interfaces to Spine1

! Note – do all 1/1, 1/2, etc. to 1/15, 1/16 in this block (showing just first and last)

Leaf2(config)# interface Eth 1/1

Leaf2(config-if-Eth1/1)# description Link to Spine1

Leaf2(config-if-Eth1/1)# speed 800000

Leaf2(config-if-Eth1/1)# unreliable-los auto

Leaf2(config-if-Eth1/1)# no shutdown

Leaf2(config-if-Eth1/1)# mtu 9100

Leaf2(config-if-Eth1/1)# ipv6 enable

Leaf2(config-if-Eth1/1)# ars bind default

Leaf2(config-if-Eth1/1)# exit

! Range of 14 links here 1/2-1/15

Leaf2(config)# interface Eth 1/16

Leaf2(config-if-Eth1/16)# description Link to Spine1

Leaf2(config-if-Eth1/16)# speed 800000

Leaf2(config-if-Eth1/16)# unreliable-los auto

Leaf2(config-if-Eth1/16)# no shutdown

Leaf2(config-if-Eth1/16)# mtu 9100

Leaf2(config-if-Eth1/16)# ipv6 enable

Leaf2(config-if-Eth1/16)# ars bind default

Leaf2(config-if-Eth1/16)# exit

! Setup uplink interfaces to Spine2

! Note – do all 1/17, 1/18, etc. to 1/31, 1/32 in this block (showing just first and last)

Leaf2(config)# interface Eth 1/17

Leaf2(config-if-Eth1/17)# description Link to Spine2

Leaf2(config-if-Eth1/17)# speed 800000

Leaf2(config-if-Eth1/17)# unreliable-los auto

Leaf2(config-if-Eth1/17)# no shutdown

Leaf2(config-if-Eth1/17)# mtu 9100

Leaf2(config-if-Eth1/17)# ipv6 enable

Leaf2(config-if-Eth1/17)# ars bind default

Leaf2(config-if-Eth1/17)# exit

! Range of 14 links here 1/18-1/31

Leaf2(config)# interface Eth 1/32

Leaf2(config-if-Eth1/32)# description Link to Spine2

Leaf2(config-if-Eth1/32)# speed 800000

Leaf2(config-if-Eth1/32)# unreliable-los auto

Leaf2(config-if-Eth1/32)# no shutdown

Leaf2(config-if-Eth1/32)# mtu 9100

Leaf2(config-if-Eth1/32)# ipv6 enable

Leaf2(config-if-Eth1/32)# ars bind default

Leaf2(config-if-Eth1/32)# exit

! Create tenant VRFs for a multi-tenant environment (NOTE: Can just setup a single tenant/VRF only also)

28

 © Copyright Super Micro Computer, Inc July, 2025.

Leaf2(config)# ip vrf Corona

Leaf2(config)# ip vrf Heineken

! No nodes for Budweiser here on leaf2, but for future if needed

Leaf2(config)# ip vrf Budweiser

! Assign /31 IP's to Corona's host interfaces Eth 1/33-1/64 (showing just first and last)

Leaf2(config)# interface Eth 1/33

Leaf2(config-if-Eth1/33)# speed 400000

Leaf2(config-if-Eth1/33)# mtu 9100

Leaf2(config-if-Eth1/33)# fec RS

Leaf2(config-if-Eth1/33)# standalone-link-training

Leaf2(config-if-Eth1/33)# unreliable-los auto

Leaf2(config-if-Eth1/33)# no shutdown

Leaf2(config-if-Eth1/33)# ip address 100.65.0.64/31

Leaf2(config-if-Eth1/33)# description Link to Corona Node 5 RNIC Slot 1 with IP 100.65.0.65/31

Leaf2(config-if-Eth1/33)# ip vrf forwarding Corona

Leaf2(config-if-Eth1/33)# exit

! Range of 30 links here 1/34-1/63

Leaf2(config)# interface Eth 1/64

Leaf2(config-if-Eth1/64)# speed 400000

Leaf2(config-if-Eth1/64)# mtu 9100

Leaf2(config-if-Eth1/64)# fec RS

Leaf2(config-if-Eth1/64)# standalone-link-training

Leaf2(config-if-Eth1/64)# unreliable-los auto

Leaf2(config-if-Eth1/64)# no shutdown

Leaf2(config-if-Eth1/64)# ip address 100.65.0.126/31

Leaf2(config-if-Eth1/64)# description Link to Corona Node 8 RNIC Slot 8 with IP 100.65.0.127/31

Leaf2(config-if-Eth1/64)# ip vrf forwarding Corona

Leaf2(config-if-Eth1/64)# exit

! Assign /31 IP's to Heineken's host interfaces Eth 1/65-1/96 (showing just first and last)

Leaf2(config)# interface Eth 1/65

Leaf2(config-if-Eth1/65)# speed 400000

Leaf2(config-if-Eth1/65)# mtu 9100

Leaf2(config-if-Eth1/65)# fec RS

Leaf2(config-if-Eth1/65)# standalone-link-training

Leaf2(config-if-Eth1/65)# unreliable-los auto

Leaf2(config-if-Eth1/65)# no shutdown

Leaf2(config-if-Eth1/65)# ip address 100.66.0.64/31

Leaf2(config-if-Eth1/65)# description Link to Heineken Node 5 RNIC Slot 1 with IP 100.66.0.65/31

Leaf2(config-if-Eth1/65)# ip vrf forwarding Heineken

Leaf2(config-if-Eth1/65)# exit

! Range of 30 links here 1/66-1/95

Leaf2(config)# interface Eth 1/96

Leaf2(config-if-Eth1/96)# speed 400000

Leaf2(config-if-Eth1/96)# mtu 9100

Leaf2(config-if-Eth1/96)# fec RS

Leaf2(config-if-Eth1/96)# standalone-link-training

Leaf2(config-if-Eth1/96)# unreliable-los auto

Leaf2(config-if-Eth1/96)# no shutdown

Leaf2(config-if-Eth1/96)# ip address 100.66.0.126/31

Leaf2(config-if-Eth1/96)# description Link to Heineken Node 8 RNIC Slot 8 with IP 100.66.0.127/31

Leaf2(config-if-Eth1/96)# ip vrf forwarding Heineken

Leaf2(config-if-Eth1/96)# exit

! Configure L3 VNI VLANs

Leaf2(config)# interface Vlan 61

Leaf2(config-if-Vlan61)# ip vrf forwarding Corona

Leaf2(config-if-Vlan61)# exit

Leaf2(config)# interface Vlan 62

Leaf2(config-if-Vlan62)# ip vrf forwarding Heineken

Leaf2(config-if-Vlan62)# exit

Leaf2(config)# interface Vlan 63

Leaf2(config-if-Vlan63)# ip vrf forwarding Budweiser

Leaf2(config-if-Vlan63)# exit

! Map VNIs to VLANs and L3 VNIs to VRFs

Leaf2(config)# interface vxlan vtep-2

Leaf2(config-if-vxlan-vtep-2)# source-ip 100.64.5.2

Leaf2(config-if-vxlan-vtep-2)# map vni 610 vlan 61

Leaf2(config-if-vxlan-vtep-2)# map vni 620 vlan 62

Leaf2(config-if-vxlan-vtep-2)# map vni 630 vlan 63

Leaf2(config-if-vxlan-vtep-2)# map vni 610 vrf Corona

Leaf2(config-if-vxlan-vtep-2)# map vni 620 vrf Heineken

Leaf2(config-if-vxlan-vtep-2)# map vni 630 vrf Budweiser

Leaf2(config-if-vxlan-vtep-2)# qos-mode uniform

Leaf2(config-if-vxlan-vtep-2)# exit

29

 © Copyright Super Micro Computer, Inc July, 2025.

! setup underlay and overlay BGP

Leaf2(config)# router bgp 65102

Leaf2(config-router-bgp)# router-id 100.64.3.2

Leaf2(config-router-bgp)# address-family ipv4 unicast

Leaf2(config-router-bgp-af)# redistribute connected

Leaf2(config-router-bgp-af)# maximum-paths 64

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# address-family l2vpn evpn

Leaf2(config-router-bgp-af)# advertise-all-vni

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# peer-group SPINES

Leaf2(config-router-bgp-pg)# remote-as external

Leaf2(config-router-bgp-pg)# timers 3 9

Leaf2(config-router-bgp-pg)# advertisement-interval 5

Leaf2(config-router-bgp-pg)# bfd

Leaf2(config-router-bgp-pg)# capability extended-nexthop

Leaf2(config-router-bgp-pg)# address-family ipv4 unicast

Leaf2(config-router-bgp-pg-af)# activate

Leaf2(config-router-bgp-pg-af)# exit

Leaf2(config-router-bgp-pg)# address-family l2vpn evpn

Leaf2(config-router-bgp-pg-af)# activate

Leaf2(config-router-bgp-pg-af)# exit

Leaf2(config-router-bgp-pg)# exit

! Note – do all 1/1, 1/2, etc. to 1/15, 1/16 neighbors in this block (showing just first and last)

Leaf2(config-router-bgp)# neighbor interface Eth 1/1

Leaf2(config-router-bgp-neighbor)# description Link to Spine1

Leaf2(config-router-bgp-neighbor)# peer-group SPINES

Leaf2(config-router-bgp-neighbor)# exit

! Range of 14 links here 1/2-1/15

Leaf2(config-router-bgp)# neighbor interface Eth 1/16

Leaf2(config-router-bgp-neighbor)# description Link to Spine1

Leaf2(config-router-bgp-neighbor)# peer-group SPINES

Leaf2(config-router-bgp-neighbor)# exit

! Note – do all 1/17, 1/18, etc. to 1/31, 1/32 neighbors in this block (showing just first and last)

Leaf2(config-router-bgp)# neighbor interface Eth 1/17

Leaf2(config-router-bgp-neighbor)# description Link to Spine2

Leaf2(config-router-bgp-neighbor)# peer-group SPINES

Leaf2(config-router-bgp-neighbor)# exit

! Range of 14 links here 1/18-1/31

Leaf2(config-router-bgp)# neighbor interface Eth 1/32

Leaf2(config-router-bgp-neighbor)# description Link to Spine2

Leaf2(config-router-bgp-neighbor)# peer-group SPINES

Leaf2(config-router-bgp-neighbor)# exit

Leaf2(config-router-bgp)# exit

Leaf2(config)# router bgp 65102 vrf Corona

Leaf2(config-router-bgp)# address-family ipv4 unicast

Leaf2(config-router-bgp-af)# redistribute connected

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# address-family l2vpn evpn

Leaf2(config-router-bgp-af)# advertise ipv4 unicast

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# exit

Leaf2(config)# router bgp 65102 vrf Heineken

Leaf2(config-router-bgp)# address-family ipv4 unicast

Leaf2(config-router-bgp-af)# redistribute connected

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# address-family l2vpn evpn

Leaf2(config-router-bgp-af)# advertise ipv4 unicast

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# exit

Leaf2(config)# router bgp 65102 vrf Budweiser

Leaf2(config-router-bgp)# address-family ipv4 unicast

Leaf2(config-router-bgp-af)# redistribute connected

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# address-family l2vpn evpn

Leaf2(config-router-bgp-af)# advertise ipv4 unicast

Leaf2(config-router-bgp-af)# exit

Leaf2(config-router-bgp)# exit

Leaf2(config)# exit

Leaf2# write memory

30

 © Copyright Super Micro Computer, Inc July, 2025.

Leaf3
Leaf3# config terminal

Leaf3(config)# lldp enable

! Now we are ready to initialize all default RoCE buffers and QoS under a single command

Leaf3(config)# roce enable

! Assign source VXLAN and Router ID addresses to loopback interfaces

Leaf3(config)# interface loopback 0

Leaf3(config-if-lo0)# description Router-id

Leaf3(config-if-lo0)# ip address 100.64.3.3/32

Leaf3(config-if-lo0)# exit

Leaf3(config)# interface loopback 1

Leaf3(config-if-lo1)# description Vtep

Leaf3(config-if-lo1)# ip address 100.64.5.3/32

Leaf3(config-if-lo1)# exit

! Setup the Adaptive Routing and switching globals

Leaf3(config)# ars profile default

Leaf3(config-ars-profile)# exit

Leaf3(config)# ars bind default

Leaf3(config)# ars port-profile default

Leaf3(config-ars-port-profile)# enable

Leaf3(config-ars-port-profile)# exit

Leaf3(config)# ars object default

Leaf3(config-ars-object)# exit

Leaf3(config)# route-map ars-map permit 10

Leaf3(config-route-map)# set ars-object default

Leaf3(config-route-map)# exit

Leaf3(config)# ip protocol any route-map ars-map

Leaf3(config)# route-map RM_SET_SRC permit 10

Leaf3(config-route-map)# set ars-object default

Leaf3(config-route-map)# exit

! Setup uplink interfaces to Spine1

! Note – do all 1/1, 1/2, etc. to 1/15, 1/16 in this block (showing just first and last)

Leaf3(config)# interface Eth 1/1

Leaf3(config-if-Eth1/1)# description Link to Spine1

Leaf3(config-if-Eth1/1)# speed 800000

Leaf3(config-if-Eth1/1)# unreliable-los auto

Leaf3(config-if-Eth1/1)# no shutdown

Leaf3(config-if-Eth1/1)# mtu 9100

Leaf3(config-if-Eth1/1)# ipv6 enable

Leaf3(config-if-Eth1/1)# ars bind default

Leaf3(config-if-Eth1/1)# exit

! Range of 14 links here 1/2-1/15

Leaf3(config)# interface Eth 1/16

Leaf3(config-if-Eth1/16)# description Link to Spine1

Leaf3(config-if-Eth1/16)# speed 800000

Leaf3(config-if-Eth1/16)# unreliable-los auto

Leaf3(config-if-Eth1/16)# no shutdown

Leaf3(config-if-Eth1/16)# mtu 9100

Leaf3(config-if-Eth1/16)# ipv6 enable

Leaf3(config-if-Eth1/16)# ars bind default

Leaf3(config-if-Eth1/16)# exit

! Setup uplink interfaces to Spine2

! Note – do all 1/17, 1/18, etc. to 1/31, 1/32 in this block (showing just first and last)

Leaf3(config)# interface Eth 1/17

Leaf3(config-if-Eth1/17)# description Link to Spine2

Leaf3(config-if-Eth1/17)# speed 800000

Leaf3(config-if-Eth1/17)# unreliable-los auto

Leaf3(config-if-Eth1/17)# no shutdown

Leaf3(config-if-Eth1/17)# mtu 9100

Leaf3(config-if-Eth1/17)# ipv6 enable

Leaf3(config-if-Eth1/17)# ars bind default

Leaf3(config-if-Eth1/17)# exit

! Range of 14 links here 1/18-1/31

Leaf3(config)# interface Eth 1/32

Leaf3(config-if-Eth1/32)# description Link to Spine2

Leaf3(config-if-Eth1/32)# speed 800000

Leaf3(config-if-Eth1/32)# unreliable-los auto

Leaf3(config-if-Eth1/32)# no shutdown

Leaf3(config-if-Eth1/32)# mtu 9100

Leaf3(config-if-Eth1/32)# ipv6 enable

Leaf3(config-if-Eth1/32)# ars bind default

Leaf3(config-if-Eth1/32)# exit

! Create tenant VRFs for a multi-tenant environment (NOTE: Can just setup a single tenant/VRF only also)

31

 © Copyright Super Micro Computer, Inc July, 2025.

Leaf3(config)# ip vrf Corona

! No nodes for Heineken here, but for future if needed

Leaf3(config)# ip vrf Heineken

Leaf3(config)# ip vrf Budweiser

! Assign /31 IP's to Corona's host interfaces Eth 1/33-1/64 (showing just first and last)

Leaf3(config)# interface Eth 1/33

Leaf3(config-if-Eth1/33)# speed 400000

Leaf3(config-if-Eth1/33)# mtu 9100

Leaf3(config-if-Eth1/33)# fec RS

Leaf3(config-if-Eth1/33)# standalone-link-training

Leaf3(config-if-Eth1/33)# unreliable-los auto

Leaf3(config-if-Eth1/33)# no shutdown

Leaf3(config-if-Eth1/33)# ip address 100.65.0.128/31

Leaf3(config-if-Eth1/33)# description Link to Corona Node 9 RNIC Slot 1 with IP 100.65.0.129/31

Leaf3(config-if-Eth1/33)# ip vrf forwarding Corona

Leaf3(config-if-Eth1/33)# exit

! Range of 30 links here 1/34-1/63

Leaf3(config)# interface Eth 1/64

Leaf3(config-if-Eth1/64)# speed 400000

Leaf3(config-if-Eth1/64)# mtu 9100

Leaf3(config-if-Eth1/64)# fec RS

Leaf3(config-if-Eth1/64)# standalone-link-training

Leaf3(config-if-Eth1/64)# unreliable-los auto

Leaf3(config-if-Eth1/64)# no shutdown

Leaf3(config-if-Eth1/64)# ip address 100.65.0.190/31

Leaf3(config-if-Eth1/64)# description Link to Corona Node 12 RNIC Slot 8 with IP 100.65.0.191/31

Leaf3(config-if-Eth1/64)# ip vrf forwarding Corona

Leaf3(config-if-Eth1/64)# exit

! Assign /31 IP's to Budweiser host interfaces Eth 1/65-1/96 (showing just first and last)

Leaf3(config)# interface Eth 1/65

Leaf3(config-if-Eth1/65)# speed 400000

Leaf3(config-if-Eth1/65)# mtu 9100

Leaf3(config-if-Eth1/65)# fec RS

Leaf3(config-if-Eth1/65)# standalone-link-training

Leaf3(config-if-Eth1/65)# unreliable-los auto

Leaf3(config-if-Eth1/65)# no shutdown

Leaf3(config-if-Eth1/65)# ip address 100.67.0.0/31

Leaf3(config-if-Eth1/65)# description Link to Budweiser Node 1 RNIC Slot 1 with IP 100.67.0.1/31

Leaf3(config-if-Eth1/65)# ip vrf forwarding Budweiser

Leaf3(config-if-Eth1/65)# exit

! Range of 30 links here 1/66-1/95

Leaf3(config)# interface Eth 1/96

Leaf3(config-if-Eth1/96)# speed 400000

Leaf3(config-if-Eth1/96)# mtu 9100

Leaf3(config-if-Eth1/96)# fec RS

Leaf3(config-if-Eth1/96)# standalone-link-training

Leaf3(config-if-Eth1/96)# unreliable-los auto

Leaf3(config-if-Eth1/96)# no shutdown

Leaf3(config-if-Eth1/96)# ip address 100.67.0.62/31

Leaf3(config-if-Eth1/96)# description Link to Budweiser Node 4 RNIC Slot 8 with IP 100.67.0.63/31

Leaf3(config-if-Eth1/96)# ip vrf forwarding Budweiser

Leaf3(config-if-Eth1/96)# exit

! Configure L3 VNI VLANs

Leaf3(config)# interface Vlan 61

Leaf3(config-if-Vlan61)# ip vrf forwarding Corona

Leaf3(config-if-Vlan61)# exit

Leaf3(config)# interface Vlan 62

Leaf3(config-if-Vlan62)# ip vrf forwarding Heineken

Leaf3(config-if-Vlan62)# exit

Leaf3(config)# interface Vlan 63

Leaf3(config-if-Vlan63)# ip vrf forwarding Budweiser

Leaf3(config-if-Vlan63)# exit

! Map VNIs to VLANs and L3 VNIs to VRFs

Leaf3(config)# interface vxlan vtep-3

Leaf3(config-if-vxlan-vtep-3)# source-ip 100.64.5.3

Leaf3(config-if-vxlan-vtep-3)# map vni 610 vlan 61

Leaf3(config-if-vxlan-vtep-3)# map vni 620 vlan 62

Leaf3(config-if-vxlan-vtep-3)# map vni 630 vlan 63

Leaf3(config-if-vxlan-vtep-3)# map vni 610 vrf Corona

Leaf3(config-if-vxlan-vtep-3)# map vni 620 vrf Heineken

Leaf3(config-if-vxlan-vtep-3)# map vni 630 vrf Budweiser

Leaf3(config-if-vxlan-vtep-3)# qos-mode uniform

Leaf3(config-if-vxlan-vtep-3)# exit

32

 © Copyright Super Micro Computer, Inc July, 2025.

! setup underlay and overlay BGP

Leaf3(config)# router bgp 65103

Leaf3(config-router-bgp)# router-id 100.64.3.3

Leaf3(config-router-bgp)# address-family ipv4 unicast

Leaf3(config-router-bgp-af)# redistribute connected

Leaf3(config-router-bgp-af)# maximum-paths 64

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# address-family l2vpn evpn

Leaf3(config-router-bgp-af)# advertise-all-vni

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# peer-group SPINES

Leaf3(config-router-bgp-pg)# remote-as external

Leaf3(config-router-bgp-pg)# timers 3 9

Leaf3(config-router-bgp-pg)# advertisement-interval 5

Leaf3(config-router-bgp-pg)# bfd

Leaf3(config-router-bgp-pg)# capability extended-nexthop

Leaf3(config-router-bgp-pg)# address-family ipv4 unicast

Leaf3(config-router-bgp-pg-af)# activate

Leaf3(config-router-bgp-pg-af)# exit

Leaf3(config-router-bgp-pg)# address-family l2vpn evpn

Leaf3(config-router-bgp-pg-af)# activate

Leaf3(config-router-bgp-pg-af)# exit

Leaf3(config-router-bgp-pg)# exit

! Note – do all 1/1, 1/2, etc. to 1/15, 1/16 neighbors in this block (showing just first and last)

Leaf3(config-router-bgp)# neighbor interface Eth 1/1

Leaf3(config-router-bgp-neighbor)# description Link to Spine1

Leaf3(config-router-bgp-neighbor)# peer-group SPINES

Leaf3(config-router-bgp-neighbor)# exit

! Range of 14 links here 1/2-1/15

Leaf3(config-router-bgp)# neighbor interface Eth 1/16

Leaf3(config-router-bgp-neighbor)# description Link to Spine1

Leaf3(config-router-bgp-neighbor)# peer-group SPINES

Leaf3(config-router-bgp-neighbor)# exit

! Note – do all 1/17, 1/18, etc. to 1/31, 1/32 neighbors in this block (showing just first and last)

Leaf3(config-router-bgp)# neighbor interface Eth 1/17

Leaf3(config-router-bgp-neighbor)# description Link to Spine2

Leaf3(config-router-bgp-neighbor)# peer-group SPINES

Leaf3(config-router-bgp-neighbor)# exit

! Range of 14 links here 1/18-1/31

Leaf3(config-router-bgp)# neighbor interface Eth 1/32

Leaf3(config-router-bgp-neighbor)# description Link to Spine2

Leaf3(config-router-bgp-neighbor)# peer-group SPINES

Leaf3(config-router-bgp-neighbor)# exit

Leaf3(config-router-bgp)# exit

Leaf3(config)# router bgp 65103 vrf Corona

Leaf3(config-router-bgp)# address-family ipv4 unicast

Leaf3(config-router-bgp-af)# redistribute connected

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# address-family l2vpn evpn

Leaf3(config-router-bgp-af)# advertise ipv4 unicast

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# exit

Leaf3(config)# router bgp 65103 vrf Heineken

Leaf3(config-router-bgp)# address-family ipv4 unicast

Leaf3(config-router-bgp-af)# redistribute connected

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# address-family l2vpn evpn

Leaf3(config-router-bgp-af)# advertise ipv4 unicast

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# exit

Leaf3(config)# router bgp 65103 vrf Budweiser

Leaf3(config-router-bgp)# address-family ipv4 unicast

Leaf3(config-router-bgp-af)# redistribute connected

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# address-family l2vpn evpn

Leaf3(config-router-bgp-af)# advertise ipv4 unicast

Leaf3(config-router-bgp-af)# exit

Leaf3(config-router-bgp)# exit

Leaf3(config)# exit

Leaf3# write memory

33

 © Copyright Super Micro Computer, Inc July, 2025.

Leaf4
Leaf4# config terminal

Leaf4(config)# lldp enable

! Now we are ready to initialize all default RoCE buffers and QoS under a single command

Leaf4(config)# roce enable

! Assign source VXLAN and Router ID addresses to loopback interfaces

Leaf4(config)# interface loopback 0

Leaf4(config-if-lo0)# description Router-id

Leaf4(config-if-lo0)# ip address 100.64.3.4/32

Leaf4(config-if-lo0)# exit

Leaf4(config)# interface loopback 1

Leaf4(config-if-lo1)# description Vtep

Leaf4(config-if-lo1)# ip address 100.64.5.4/32

Leaf4(config-if-lo1)# exit

! Setup the Adaptive Routing and switching globals

Leaf4(config)# ars profile default

Leaf4(config-ars-profile)# exit

Leaf4(config)# ars bind default

Leaf4(config)# ars port-profile default

Leaf4(config-ars-port-profile)# enable

Leaf4(config-ars-port-profile)# exit

Leaf4(config)# ars object default

Leaf4(config-ars-object)# exit

Leaf4(config)# route-map ars-map permit 10

Leaf4(config-route-map)# set ars-object default

Leaf4(config-route-map)# exit

Leaf4(config)# ip protocol any route-map ars-map

Leaf4(config)# route-map RM_SET_SRC permit 10

Leaf4(config-route-map)# set ars-object default

Leaf4(config-route-map)# exit

! Setup uplink interfaces to Spine1

! Note – do all 1/1, 1/2, etc. to 1/15, 1/16 in this block (showing just first and last)

Leaf4(config)# interface Eth 1/1

Leaf4(config-if-Eth1/1)# description Link to Spine1

Leaf4(config-if-Eth1/1)# speed 800000

Leaf4(config-if-Eth1/1)# unreliable-los auto

Leaf4(config-if-Eth1/1)# no shutdown

Leaf4(config-if-Eth1/1)# mtu 9100

Leaf4(config-if-Eth1/1)# ipv6 enable

Leaf4(config-if-Eth1/1)# ars bind default

Leaf4(config-if-Eth1/1)# exit

! Range of 14 links here 1/2-1/15

Leaf4(config)# interface Eth 1/16

Leaf4(config-if-Eth1/16)# description Link to Spine1

Leaf4(config-if-Eth1/16)# speed 800000

Leaf4(config-if-Eth1/16)# unreliable-los auto

Leaf4(config-if-Eth1/16)# no shutdown

Leaf4(config-if-Eth1/16)# mtu 9100

Leaf4(config-if-Eth1/16)# ipv6 enable

Leaf4(config-if-Eth1/16)# ars bind default

Leaf4(config-if-Eth1/16)# exit

! Setup uplink interfaces to Spine2

! Note – do all 1/17, 1/18, etc. to 1/31, 1/32 in this block (showing just first and last)

Leaf4(config)# interface Eth 1/17

Leaf4(config-if-Eth1/17)# description Link to Spine2

Leaf4(config-if-Eth1/17)# speed 800000

Leaf4(config-if-Eth1/17)# unreliable-los auto

Leaf4(config-if-Eth1/17)# no shutdown

Leaf4(config-if-Eth1/17)# mtu 9100

Leaf4(config-if-Eth1/17)# ipv6 enable

Leaf4(config-if-Eth1/17)# ars bind default

Leaf4(config-if-Eth1/17)# exit

! Range of 14 links here 1/18-1/31

Leaf4(config)# interface Eth 1/32

Leaf4(config-if-Eth1/32)# description Link to Spine2

Leaf4(config-if-Eth1/32)# speed 800000

Leaf4(config-if-Eth1/32)# unreliable-los auto

Leaf4(config-if-Eth1/32)# no shutdown

Leaf4(config-if-Eth1/32)# mtu 9100

Leaf4(config-if-Eth1/32)# ipv6 enable

Leaf4(config-if-Eth1/32)# ars bind default

Leaf4(config-if-Eth1/32)# exit

! Create tenant VRFs for a multi-tenant environment (NOTE: Can just setup a single tenant/VRF only also)

34

 © Copyright Super Micro Computer, Inc July, 2025.

Leaf4(config)# ip vrf Corona

! No nodes for Heineken here, but for future if needed

Leaf4(config)# ip vrf Heineken

Leaf4(config)# ip vrf Budweiser

! Assign /31 IP's to Corona's host interfaces Eth 1/33-1/64 (showing just first and last)

Leaf4(config)# interface Eth 1/33

Leaf4(config-if-Eth1/33)# speed 400000

Leaf4(config-if-Eth1/33)# mtu 9100

Leaf4(config-if-Eth1/33)# fec RS

Leaf4(config-if-Eth1/33)# standalone-link-training

Leaf4(config-if-Eth1/33)# unreliable-los auto

Leaf4(config-if-Eth1/33)# no shutdown

Leaf4(config-if-Eth1/33)# ip address 100.65.0.192/31

Leaf4(config-if-Eth1/33)# description Link to Corona Node 13 RNIC Slot 1 with IP 100.65.0.193/31

Leaf4(config-if-Eth1/33)# ip vrf forwarding Corona

Leaf4(config-if-Eth1/33)# exit

! Range of 30 links here 1/34-1/63

Leaf4(config)# interface Eth 1/64

Leaf4(config-if-Eth1/64)# speed 400000

Leaf4(config-if-Eth1/64)# mtu 9100

Leaf4(config-if-Eth1/64)# fec RS

Leaf4(config-if-Eth1/64)# standalone-link-training

Leaf4(config-if-Eth1/64)# unreliable-los auto

Leaf4(config-if-Eth1/64)# no shutdown

Leaf4(config-if-Eth1/64)# ip address 100.65.0.254/31

Leaf4(config-if-Eth1/64)# description Link to Corona Node 16 RNIC Slot 8 with IP 100.65.0.255/31

Leaf4(config-if-Eth1/64)# ip vrf forwarding Corona

Leaf4(config-if-Eth1/64)# exit

! Assign /31 IP's to Budweiser host interfaces Eth 1/65-1/96 (showing just first and last)

Leaf4(config)# interface Eth 1/65

Leaf4(config-if-Eth1/65)# speed 400000

Leaf4(config-if-Eth1/65)# mtu 9100

Leaf4(config-if-Eth1/65)# fec RS

Leaf4(config-if-Eth1/65)# standalone-link-training

Leaf4(config-if-Eth1/65)# unreliable-los auto

Leaf4(config-if-Eth1/65)# no shutdown

Leaf4(config-if-Eth1/65)# ip address 100.67.0.64/31

Leaf4(config-if-Eth1/65)# description Link to Budweiser Node 5 RNIC Slot 1 with IP 100.67.0.65/31

Leaf4(config-if-Eth1/65)# ip vrf forwarding Budweiser

Leaf4(config-if-Eth1/65)# exit

! Range of 30 links here 1/66-1/95

Leaf4(config)# interface Eth 1/96

Leaf4(config-if-Eth1/96)# speed 400000

Leaf4(config-if-Eth1/96)# mtu 9100

Leaf4(config-if-Eth1/96)# fec RS

Leaf4(config-if-Eth1/96)# standalone-link-training

Leaf4(config-if-Eth1/96)# unreliable-los auto

Leaf4(config-if-Eth1/96)# no shutdown

Leaf4(config-if-Eth1/96)# ip address 100.67.0.126/31

Leaf4(config-if-Eth1/96)# description Link to Budweiser Node 8 RNIC Slot 8 with IP 100.67.0.127/31

Leaf4(config-if-Eth1/96)# ip vrf forwarding Budweiser

Leaf4(config-if-Eth1/96)# exit

! Configure L3 VNI VLANs

Leaf4(config)# interface Vlan 61

Leaf4(config-if-Vlan61)# ip vrf forwarding Corona

Leaf4(config-if-Vlan61)# exit

Leaf4(config)# interface Vlan 62

Leaf4(config-if-Vlan62)# ip vrf forwarding Heineken

Leaf4(config-if-Vlan62)# exit

Leaf4(config)# interface Vlan 63

Leaf4(config-if-Vlan63)# ip vrf forwarding Budweiser

Leaf4(config-if-Vlan63)# exit

! Map VNIs to VLANs and L3 VNIs to VRFs

Leaf4(config)# interface vxlan vtep-4

Leaf4(config-if-vxlan-vtep-4)# source-ip 100.64.5.4

Leaf4(config-if-vxlan-vtep-4)# map vni 610 vlan 61

Leaf4(config-if-vxlan-vtep-4)# map vni 620 vlan 62

Leaf4(config-if-vxlan-vtep-4)# map vni 630 vlan 63

Leaf4(config-if-vxlan-vtep-4)# map vni 610 vrf Corona

Leaf4(config-if-vxlan-vtep-4)# map vni 620 vrf Heineken

Leaf4(config-if-vxlan-vtep-4)# map vni 630 vrf Budweiser

Leaf4(config-if-vxlan-vtep-4)# qos-mode uniform

Leaf4(config-if-vxlan-vtep-4)# exit

35

 © Copyright Super Micro Computer, Inc July, 2025.

! setup underlay and overlay BGP

Leaf4(config)# router bgp 65104

Leaf4(config-router-bgp)# router-id 100.64.3.4

Leaf4(config-router-bgp)# address-family ipv4 unicast

Leaf4(config-router-bgp-af)# redistribute connected

Leaf4(config-router-bgp-af)# maximum-paths 64

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# address-family l2vpn evpn

Leaf4(config-router-bgp-af)# advertise-all-vni

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# peer-group SPINES

Leaf4(config-router-bgp-pg)# remote-as external

Leaf4(config-router-bgp-pg)# timers 3 9

Leaf4(config-router-bgp-pg)# advertisement-interval 5

Leaf4(config-router-bgp-pg)# bfd

Leaf4(config-router-bgp-pg)# capability extended-nexthop

Leaf4(config-router-bgp-pg)# address-family ipv4 unicast

Leaf4(config-router-bgp-pg-af)# activate

Leaf4(config-router-bgp-pg-af)# exit

Leaf4(config-router-bgp-pg)# address-family l2vpn evpn

Leaf4(config-router-bgp-pg-af)# activate

Leaf4(config-router-bgp-pg-af)# exit

Leaf4(config-router-bgp-pg)# exit

! Note – do all 1/1, 1/2, etc. to 1/15, 1/16 neighbors in this block (showing just first and last)

Leaf4(config-router-bgp)# neighbor interface Eth 1/1

Leaf4(config-router-bgp-neighbor)# description Link to Spine1

Leaf4(config-router-bgp-neighbor)# peer-group SPINES

Leaf4(config-router-bgp-neighbor)# exit

! Range of 14 links here 1/2-1/15

Leaf4(config-router-bgp)# neighbor interface Eth 1/16

Leaf4(config-router-bgp-neighbor)# description Link to Spine1

Leaf4(config-router-bgp-neighbor)# peer-group SPINES

Leaf4(config-router-bgp-neighbor)# exit

! Note – do all 1/17, 1/18, etc. to 1/31, 1/32 neighbors in this block (showing just first and last)

Leaf4(config-router-bgp)# neighbor interface Eth 1/17

Leaf4(config-router-bgp-neighbor)# description Link to Spine2

Leaf4(config-router-bgp-neighbor)# peer-group SPINES

Leaf4(config-router-bgp-neighbor)# exit

! Range of 14 links here 1/18-1/31

Leaf4(config-router-bgp)# neighbor interface Eth 1/32

Leaf4(config-router-bgp-neighbor)# description Link to Spine2

Leaf4(config-router-bgp-neighbor)# peer-group SPINES

Leaf4(config-router-bgp-neighbor)# exit

Leaf4(config-router-bgp)# exit

Leaf4(config)# router bgp 65104 vrf Corona

Leaf4(config-router-bgp)# address-family ipv4 unicast

Leaf4(config-router-bgp-af)# redistribute connected

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# address-family l2vpn evpn

Leaf4(config-router-bgp-af)# advertise ipv4 unicast

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# exit

Leaf4(config)# router bgp 65104 vrf Heineken

Leaf4(config-router-bgp)# address-family ipv4 unicast

Leaf4(config-router-bgp-af)# redistribute connected

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# address-family l2vpn evpn

Leaf4(config-router-bgp-af)# advertise ipv4 unicast

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# exit

Leaf4(config)# router bgp 65104 vrf Budweiser

Leaf4(config-router-bgp)# address-family ipv4 unicast

Leaf4(config-router-bgp-af)# redistribute connected

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# address-family l2vpn evpn

Leaf4(config-router-bgp-af)# advertise ipv4 unicast

Leaf4(config-router-bgp-af)# exit

Leaf4(config-router-bgp)# exit

Leaf4(config)# exit

Leaf4# write memory

36

 © Copyright Super Micro Computer, Inc July, 2025.

Spine1
Spine1# config terminal

Spine1(config)# lldp enable

! Now we are ready to initialize all default RoCE buffers and QoS under a single command

Spine1(config)# roce enable

! Assign Router ID addresses to loopback interface

Spine1(config)# interface loopback 0

Spine1(config-if-lo0)# description Router-id

Spine1(config-if-lo0)# ip address 100.64.1.1/32

Spine1(config-if-lo0)# exit

! Setup the Adaptive Routing and switching globals

Spine1(config)# ars profile default

Spine1(config-ars-profile)# exit

Spine1(config)# ars bind default

Spine1(config)# ars port-profile default

Spine1(config-ars-port-profile)# enable

Spine1(config-ars-port-profile)# exit

Spine1(config)# ars object default

Spine1(config-ars-object)# exit

Spine1(config)# route-map ars-map permit 10

Spine1(config-route-map)# set ars-object default

Spine1(config-route-map)# exit

Spine1(config)# ip protocol any route-map ars-map

Spine1(config)# route-map RM_SET_SRC permit 10

Spine1(config-route-map)# set ars-object default

Spine1(config-route-map)# exit

! Setup downlink interfaces to Leaf1

! Note – do all 1/1, 1/2, etc. to 1/15, 1/16 in this block (showing just first and last)

Spine1(config)# interface Eth 1/1

Spine1(config-if-Eth1/1)# description Link to Leaf1

Spine1(config-if-Eth1/1)# speed 800000

Spine1(config-if-Eth1/1)# unreliable-los auto

Spine1(config-if-Eth1/1)# no shutdown

Spine1(config-if-Eth1/1)# mtu 9100

Spine1(config-if-Eth1/1)# ipv6 enable

Spine1(config-if-Eth1/1)# ars bind default

Spine1(config-if-Eth1/1)# exit

! Range of 14 links here 1/2-1/15

Spine1(config)# interface Eth 1/16

Spine1(config-if-Eth1/16)# description Link to Leaf1

Spine1(config-if-Eth1/16)# speed 800000

Spine1(config-if-Eth1/16)# unreliable-los auto

Spine1(config-if-Eth1/16)# no shutdown

Spine1(config-if-Eth1/16)# mtu 9100

Spine1(config-if-Eth1/16)# ipv6 enable

Spine1(config-if-Eth1/16)# ars bind default

Spine1(config-if-Eth1/16)# exit

! Setup downlink interfaces to Leaf2

! Note – do all 1/17, 1/18, etc. to 1/31, 1/32 in this block (showing just first and last)

Spine1(config)# interface Eth 1/17

Spine1(config-if-Eth1/17)# description Link to Leaf2

Spine1(config-if-Eth1/17)# speed 800000

Spine1(config-if-Eth1/17)# unreliable-los auto

Spine1(config-if-Eth1/17)# no shutdown

Spine1(config-if-Eth1/17)# mtu 9100

Spine1(config-if-Eth1/17)# ipv6 enable

Spine1(config-if-Eth1/17)# ars bind default

Spine1(config-if-Eth1/17)# exit

! Range of 14 links here 1/18-1/31

Spine1(config)# interface Eth 1/32

Spine1(config-if-Eth1/32)# description Link to Leaf2

Spine1(config-if-Eth1/32)# speed 800000

Spine1(config-if-Eth1/32)# unreliable-los auto

Spine1(config-if-Eth1/32)# no shutdown

Spine1(config-if-Eth1/32)# mtu 9100

Spine1(config-if-Eth1/32)# ipv6 enable

Spine1(config-if-Eth1/32)# ars bind default

Spine1(config-if-Eth1/32)# exit

! Setup downlink interfaces to Leaf3

! Note – do all 1/33, 1/34, etc. to 1/47, 1/48 in this block (showing just first and last)

Spine1(config)# interface Eth 1/33

Spine1(config-if-Eth1/33)# description Link to Leaf3

Spine1(config-if-Eth1/33)# speed 800000

37

 © Copyright Super Micro Computer, Inc July, 2025.

Spine1(config-if-Eth1/33)# unreliable-los auto

Spine1(config-if-Eth1/33)# no shutdown

Spine1(config-if-Eth1/33)# mtu 9100

Spine1(config-if-Eth1/33)# ipv6 enable

Spine1(config-if-Eth1/33)# ars bind default

Spine1(config-if-Eth1/33)# exit

! Range of 14 links here 1/34-1/47

Spine1(config)# interface Eth 1/48

Spine1(config-if-Eth1/48)# description Link to Leaf3

Spine1(config-if-Eth1/48)# speed 800000

Spine1(config-if-Eth1/48)# unreliable-los auto

Spine1(config-if-Eth1/48)# no shutdown

Spine1(config-if-Eth1/48)# mtu 9100

Spine1(config-if-Eth1/48)# ipv6 enable

Spine1(config-if-Eth1/48)# ars bind default

Spine1(config-if-Eth1/48)# exit

! Setup downlink interfaces to Leaf4

! Note – do all 1/49, 1/50, etc. to 1/63, 1/64 in this block (showing just first and last)

Spine1(config)# interface Eth 1/49

Spine1(config-if-Eth1/49)# description Link to Leaf4

Spine1(config-if-Eth1/49)# speed 800000

Spine1(config-if-Eth1/49)# unreliable-los auto

Spine1(config-if-Eth1/49)# no shutdown

Spine1(config-if-Eth1/49)# mtu 9100

Spine1(config-if-Eth1/49)# ipv6 enable

Spine1(config-if-Eth1/49)# ars bind default

Spine1(config-if-Eth1/49)# exit

! Range of 14 links here 1/50-1/63

Spine1(config)# interface Eth 1/64

Spine1(config-if-Eth1/64)# description Link to Leaf4

Spine1(config-if-Eth1/64)# speed 800000

Spine1(config-if-Eth1/64)# unreliable-los auto

Spine1(config-if-Eth1/64)# no shutdown

Spine1(config-if-Eth1/64)# mtu 9100

Spine1(config-if-Eth1/64)# ipv6 enable

Spine1(config-if-Eth1/64)# ars bind default

Spine1(config-if-Eth1/64)# exit

! Configure the underlay BGP

Spine1(config)# router bgp 65001

Spine1(config-router-bgp)# router-id 100.64.1.1

Spine1(config-router-bgp)# log-neighbor-changes

Spine1(config-router-bgp)# bestpath as-path multipath-relax

Spine1(config-router-bgp)# timers 60 180

Spine1(config-router-bgp)# address-family ipv4 unicast

Spine1(config-router-bgp-af)# redistribute connected

Spine1(config-router-bgp-af)# maximum-paths 64

Spine1(config-router-bgp-af)# exit

Spine1(config-router-bgp)# peer-group LEAFS

Spine1(config-router-bgp-pg)# remote-as external

Spine1(config-router-bgp-pg)# timers 3 9

Spine1(config-router-bgp-pg)# advertisement-interval 5

Spine1(config-router-bgp-pg)# bfd

Spine1(config-router-bgp-pg)# capability extended-nexthop

Spine1(config-router-bgp-pg)# address-family ipv4 unicast

Spine1(config-router-bgp-pg-af)# activate

Spine1(config-router-bgp-pg-af)# exit

! Setup all BGP neighbor interfaces to all Leafs (Note- just showing start and last 2 per leaf here)

Spine1(config-router-bgp)# neighbor interface Eth 1/1

Spine1(config-router-bgp-neighbor)# description Link to Leaf1

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

! Range of 14 Neighbors here 1/2-1/15

Spine1(config-router-bgp)# neighbor interface Eth 1/16

Spine1(config-router-bgp-neighbor)# description Link to Leaf1

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

! Note – do all 1/17, 1/18, etc. to 1/31, 1/32 neighbors in this block (showing just first and last)

Spine1(config-router-bgp)# neighbor interface Eth 1/17

Spine1(config-router-bgp-neighbor)# description Link to Leaf2

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

! Range of 14 Neighbors here 1/18-1/31

Spine1(config-router-bgp)# neighbor interface Eth 1/32

38

 © Copyright Super Micro Computer, Inc July, 2025.

Spine1(config-router-bgp-neighbor)# description Link to Leaf2

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

! Note – do all 1/33, 1/34, etc. to 1/47, 1/48 neighbors in this block (showing just first and last)

Spine1(config-router-bgp)# neighbor interface Eth 1/33

Spine1(config-router-bgp-neighbor)# description Link to Leaf3

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

! Range of 14 Neighbors here 1/34-1/47

Spine1(config-router-bgp)# neighbor interface Eth 1/48

Spine1(config-router-bgp-neighbor)# description Link to Leaf3

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

! Note – do all 1/49, 1/50, etc. to 1/63, 1/64 neighbors in this block (showing just first and last)

Spine1(config-router-bgp)# neighbor interface Eth 1/49

Spine1(config-router-bgp-neighbor)# description Link to Leaf4

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

! Range of 14 Neighbors here 1/50-1/63

Spine1(config-router-bgp)# neighbor interface Eth 1/64

Spine1(config-router-bgp-neighbor)# description Link to Leaf4

Spine1(config-router-bgp-neighbor)# peer-group LEAFS

Spine1(config-router-bgp-neighbor)# exit

Spine1(config-router-bgp)# exit

Spine1(config)# exit

Spine1# write memory

39

 © Copyright Super Micro Computer, Inc July, 2025.

Spine2
Spine2# config terminal

Spine1(config)# lldp enable

! Now we are ready to initialize all default RoCE buffers and QoS under a single command

Spine2(config)# roce enable

! Assign Router ID addresses to loopback interface

Spine2(config)# interface loopback 0

Spine2(config-if-lo0)# description Router-id

Spine2(config-if-lo0)# ip address 100.64.1.2/32

Spine2(config-if-lo0)# exit

! Setup the Adaptive Routing and switching globals

Spine2(config)# ars profile default

Spine2(config-ars-profile)# exit

Spine2(config)# ars bind default

Spine2(config)# ars port-profile default

Spine2(config-ars-port-profile)# enable

Spine2(config-ars-port-profile)# exit

Spine2(config)# ars object default

Spine2(config-ars-object)# exit

Spine2(config)# route-map ars-map permit 10

Spine2(config-route-map)# set ars-object default

Spine2(config-route-map)# exit

Spine2(config)# ip protocol any route-map ars-map

Spine2(config)# route-map RM_SET_SRC permit 10

Spine2(config-route-map)# set ars-object default

Spine2(config-route-map)# exit

! Setup downlink interfaces to Leaf1

! Note – do all 1/1, 1/2, etc. to 1/15, 1/16 in this block (showing just first and last)

Spine2(config)# interface Eth 1/1

Spine2(config-if-Eth1/1)# description Link to Leaf1

Spine2(config-if-Eth1/1)# speed 800000

Spine2(config-if-Eth1/1)# unreliable-los auto

Spine2(config-if-Eth1/1)# no shutdown

Spine2(config-if-Eth1/1)# mtu 9100

Spine2(config-if-Eth1/1)# ipv6 enable

Spine2(config-if-Eth1/1)# ars bind default

Spine2(config-if-Eth1/1)# exit

! Range of 14 links here 1/2-1/15

Spine2(config)# interface Eth 1/16

Spine2(config-if-Eth1/16)# description Link to Leaf1

Spine2(config-if-Eth1/16)# speed 800000

Spine2(config-if-Eth1/16)# unreliable-los auto

Spine2(config-if-Eth1/16)# no shutdown

Spine2(config-if-Eth1/16)# mtu 9100

Spine2(config-if-Eth1/16)# ipv6 enable

Spine2(config-if-Eth1/16)# ars bind default

Spine2(config-if-Eth1/16)# exit

! Setup downlink interfaces to Leaf2

! Note – do all 1/17, 1/18, etc. to 1/31, 1/32 in this block (showing just first and last)

Spine2(config)# interface Eth 1/17

Spine2(config-if-Eth1/17)# description Link to Leaf2

Spine2(config-if-Eth1/17)# speed 800000

Spine2(config-if-Eth1/17)# unreliable-los auto

Spine2(config-if-Eth1/17)# no shutdown

Spine2(config-if-Eth1/17)# mtu 9100

Spine2(config-if-Eth1/17)# ipv6 enable

Spine2(config-if-Eth1/17)# ars bind default

Spine2(config-if-Eth1/17)# exit

! Range of 14 links here 1/18-1/31

Spine2(config)# interface Eth 1/32

Spine2(config-if-Eth1/32)# description Link to Leaf2

Spine2(config-if-Eth1/32)# speed 800000

Spine2(config-if-Eth1/32)# unreliable-los auto

Spine2(config-if-Eth1/32)# no shutdown

Spine2(config-if-Eth1/32)# mtu 9100

Spine2(config-if-Eth1/32)# ipv6 enable

Spine2(config-if-Eth1/32)# ars bind default

Spine2(config-if-Eth1/32)# exit

! Setup downlink interfaces to Leaf3

! Note – do all 1/33, 1/34, etc. to 1/47, 1/48 in this block (showing just first and last)

Spine2(config)# interface Eth 1/33

Spine2(config-if-Eth1/33)# description Link to Leaf3

Spine2(config-if-Eth1/33)# speed 800000

40

 © Copyright Super Micro Computer, Inc July, 2025.

Spine2(config-if-Eth1/33)# unreliable-los auto

Spine2(config-if-Eth1/33)# no shutdown

Spine2(config-if-Eth1/33)# mtu 9100

Spine2(config-if-Eth1/33)# ipv6 enable

Spine2(config-if-Eth1/33)# ars bind default

Spine2(config-if-Eth1/33)# exit

! Range of 14 links here 1/34-1/47

Spine2(config)# interface Eth 1/48

Spine2(config-if-Eth1/48)# description Link to Leaf3

Spine2(config-if-Eth1/48)# speed 800000

Spine2(config-if-Eth1/48)# unreliable-los auto

Spine2(config-if-Eth1/48)# no shutdown

Spine2(config-if-Eth1/48)# mtu 9100

Spine2(config-if-Eth1/48)# ipv6 enable

Spine2(config-if-Eth1/48)# ars bind default

Spine2(config-if-Eth1/48)# exit

! Setup downlink interfaces to Leaf4

! Note – do all 1/49, 1/50, etc. to 1/63, 1/64 in this block (showing just first and last)

Spine2(config)# interface Eth 1/49

Spine2(config-if-Eth1/49)# description Link to Leaf4

Spine2(config-if-Eth1/49)# speed 800000

Spine2(config-if-Eth1/49)# unreliable-los auto

Spine2(config-if-Eth1/49)# no shutdown

Spine2(config-if-Eth1/49)# mtu 9100

Spine2(config-if-Eth1/49)# ipv6 enable

Spine2(config-if-Eth1/49)# ars bind default

Spine2(config-if-Eth1/49)# exit

! Range of 14 links here 1/50-1/63

Spine2(config)# interface Eth 1/64

Spine2(config-if-Eth1/64)# description Link to Leaf4

Spine2(config-if-Eth1/64)# speed 800000

Spine2(config-if-Eth1/64)# unreliable-los auto

Spine2(config-if-Eth1/64)# no shutdown

Spine2(config-if-Eth1/64)# mtu 9100

Spine2(config-if-Eth1/64)# ipv6 enable

Spine2(config-if-Eth1/64)# ars bind default

Spine2(config-if-Eth1/64)# exit

! Configure the underlay BGP

Spine2(config)# router bgp 65001

Spine2(config-router-bgp)# router-id 100.64.1.2

Spine2(config-router-bgp)# log-neighbor-changes

Spine2(config-router-bgp)# bestpath as-path multipath-relax

Spine2(config-router-bgp)# timers 60 180

Spine2(config-router-bgp)# address-family ipv4 unicast

Spine2(config-router-bgp-af)# redistribute connected

Spine2(config-router-bgp-af)# maximum-paths 64

Spine2(config-router-bgp-af)# exit

Spine2(config-router-bgp)# peer-group LEAFS

Spine2(config-router-bgp-pg)# remote-as external

Spine2(config-router-bgp-pg)# timers 3 9

Spine2(config-router-bgp-pg)# advertisement-interval 5

Spine2(config-router-bgp-pg)# bfd

Spine2(config-router-bgp-pg)# capability extended-nexthop

Spine2(config-router-bgp-pg)# address-family ipv4 unicast

Spine2(config-router-bgp-pg-af)# activate

Spine2(config-router-bgp-pg-af)# exit

! Setup all BGP neighbor interfaces to all Leafs (Note- just showing start and last 2 per leaf here)

Spine2(config-router-bgp)# neighbor interface Eth 1/1

Spine2(config-router-bgp-neighbor)# description Link to Leaf1

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

! Range of 14 Neighbors here 1/2-1/15

Spine2(config-router-bgp)# neighbor interface Eth 1/16

Spine2(config-router-bgp-neighbor)# description Link to Leaf1

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

! Note – do all 1/17, 1/18, etc. to 1/31, 1/32 neighbors in this block (showing just first and last)

Spine2(config-router-bgp)# neighbor interface Eth 1/17

Spine2(config-router-bgp-neighbor)# description Link to Leaf2

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

! Range of 14 Neighbors here 1/18-1/31

Spine2(config-router-bgp)# neighbor interface Eth 1/32

41

 © Copyright Super Micro Computer, Inc July, 2025.

Spine2(config-router-bgp-neighbor)# description Link to Leaf2

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

! Note – do all 1/33, 1/34, etc. to 1/47, 1/48 neighbors in this block (showing just first and last)

Spine2(config-router-bgp)# neighbor interface Eth 1/33

Spine2(config-router-bgp-neighbor)# description Link to Leaf3

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

! Range of 14 Neighbors here 1/34-1/47

Spine2(config-router-bgp)# neighbor interface Eth 1/48

Spine2(config-router-bgp-neighbor)# description Link to Leaf3

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

! Note – do all 1/49, 1/50, etc. to 1/63, 1/64 neighbors in this block (showing just first and last)

Spine2(config-router-bgp)# neighbor interface Eth 1/49

Spine2(config-router-bgp-neighbor)# description Link to Leaf4

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

! Range of 14 Neighbors here 1/50-1/63

Spine2(config-router-bgp)# neighbor interface Eth 1/64

Spine2(config-router-bgp-neighbor)# description Link to Leaf4

Spine2(config-router-bgp-neighbor)# peer-group LEAFS

Spine2(config-router-bgp-neighbor)# exit

Spine2(config-router-bgp)# exit

Spine2(config)# exit

Spine2# write memory

42

 © Copyright Super Micro Computer, Inc July, 2025.

Appendix B: Detail on how the Switch QoS will be setup

DSCP Values from RNIC

When using the roce enable command on the switches in this cluster, the following configuration will be set up.

DSCP Value:

26 will be set up for the AMD Pollara Pollara-1Q400P RoCEv2 traffic

• traffic-class 3, priority-group 3, queue 3, pfc-priority-group 3, pfc-priority-queue 3, no-drop enable

26 will be set up in case the customer wishes to attach Brocade Thor2 Adapters in the MI GPU systems

• traffic-class 3, priority-group 3, queue 3, pfc-priority-group 3, pfc-priority-queue 3

DSCP 48 will be set up for CNP handling

• traffic-class 6, priority-group 7, queue 0, pfc-priority-group 0, pfc-priority-queue 0

Scheduler on all Switches

Switch scheduling policy for queues

0 will be dwrr with a weight of 50

3 will be dwrr with a weight of 50

6 will be strict

ECN Configuration on all Switches

ECN is ideally the first method for congestion signaling and control, whereas the PFC configuration is used as a last resort to

pause traffic and hop-by-hop backpressure to the sender. These settings are all assuming 400GE RNIC that are mapped 1:1 to

MI325X GPU’s via internal PLX switch for optimized RDMA without any PCI-PCI bridges (i.e. switched on identical bus)

qos wred-policy is green ECN with min threshold of 1000k Bytes, max of 3000k Bytes, and a drop probability of 20%

For interfaces 200GE and below, we make the min/max/drop values to 500kB/1500kB/20%

Buffer Configuration on all Switches

On a switch which has both per port dedicated and global shared buffers, ingress traffic can still come in upon the act of

asserting a pause frame (IEEE 802.1x) to the device and the time the device actually pauses transmission. The size of buffers for

this purpose is called the headroom and is set below to ~2.6MB.

shared-headroom-size set to size/mode of 2621440/dynamic

On the switch silicon inside the SSE-T8164S the default internal buffer allocations are not user configurable but are dynamically

optimized when RoCEv2 is enabled on the switch, inclusive of accounting for the port speeds the traffic will ingress/egress. The

configuration of the PFC pause operation thresholds are also optimized – and any modification requires expert level support –

hence outside a discussion in this broader validated design document. Therefore, the internal sizing is not exposed to the level

of the configuration file.

43

 © Copyright Super Micro Computer, Inc July, 2025.

Overall Default QoS Sections of larger running-configuration on all Switches

!

roce enable

!

qos map dscp-tc ROCE

dscp 0-3,5-23,25,27-47,49-63 traffic-class 0

dscp 24,26 traffic-class 3

dscp 4 traffic-class 3

dscp 48 traffic-class 6

!

qos map tc-queue ROCE

traffic-class 0 queue 0

traffic-class 1 queue 1

traffic-class 2 queue 2

traffic-class 3 queue 3

traffic-class 4 queue 4

traffic-class 5 queue 5

traffic-class 6 queue 6

traffic-class 7 queue 7

!

qos map tc-pg ROCE

traffic-class 3 priority-group 3

traffic-class 4 priority-group 4

traffic-class 0-2,4-7 priority-group 7

!

qos map pfc-priority-queue ROCE

pfc-priority 0 queue 0

pfc-priority 1 queue 1

pfc-priority 2 queue 2

pfc-priority 3 queue 3

pfc-priority 4 queue 4

pfc-priority 5 queue 5

pfc-priority 6 queue 6

pfc-priority 7 queue 7

!

qos wred-policy ROCE

green minimum-threshold 1000 maximum-threshold 3000 drop-probability 20

ecn green

!

qos scheduler-policy ROCE

!

queue 0

type dwrr

weight 50

!

queue 3

44

 © Copyright Super Micro Computer, Inc July, 2025.

type dwrr

weight 50

!

queue 4

type dwrr

weight 50

!

queue 6

type strict

! Showing one sample interface on leaf 1

interface Ethernet1/9/1

mtu 9100

speed 400000

ip address 100.65.1.0/31

description Link to Corona Node RNIC with IP 100.65.1.1/31

ip vrf forwarding Corona

unreliable-los auto

no shutdown

queue 3 wred-policy ROCE

scheduler-policy ROCE

qos-map dscp-tc ROCE

qos-map tc-queue ROCE

qos-map tc-pg ROCE

qos-map pfc-priority-queue ROCE

priority-flow-control priority 3

priority-flow-control watchdog action drop

priority-flow-control watchdog on detect-time 200

priority-flow-control watchdog restore-time 400

!

45

 © Copyright Super Micro Computer, Inc July, 2025.

Appendix C: Connection maps to manage numbers of links

One important aspect of the deployment time is the interconnection of all these nodes, leafs, spines, and potentially

superspines for a given cluster. Below is a shortened list of the interconnections in this validated design, with suggested

labelling on the cables for ease in locating, replacing, troubleshooting, etc. as required. Ideally the tooling to perform the

cluster design, can also output a connection map like these below. If the installer focuses on the label columns, they can place

tags on the cable ends for simpler installation and any required operations later.

System to Leaf DAC Connection Map (with AOC-S400G-B1C in slots 1-8 on server)

Leaf Leaf
Port

Leaf End Cable
Label

Cable
Breakout
Port

RNIC
PCIe Slot

RNIC
Port

Node RNIC Port End
Cable Label

Type Length
(m)

1 9 L1P9-N1PCI1_2 1 1 1 1 N1PCI1-L1P9 DAC 2

1 9 2 2 1 1 N1PCI2-L1P9 DAC 2

<…> <…> <…> <…> <…> <…> <…> <…> <…> <…>

1 56 L1P56-N8PCI7_8 1 7 1 8 N8PCI7-L1P56 DAC 2

1 56 2 8 1 8 N8PCI8-L1P56 DAC 2

2 9 L2P9-N9PCI1_2 1 1 1 9 N9PCI1-L2P9 DAC 2

2 9 2 2 1 9 N9PCI2-L2P9 DAC 2

Entries continue per the leaf to node ports outlined in appendix a….

Leaf to Spine Fiber Connection Map

Leaf Leaf
Port

Leaf
Sub
Port

Leaf End Fiber
Label

Spine Spine Port Spine
Sub Port

RNIC Port End
Cable Label

Type Length
(m)

1 1 1 L1P1-1-S1P1-1 1 1 1 S1P1-1-L1P1-1 VR8MMF 50

1 1 2 L1P1-2-S1P1-2 1 1 2 N1S3-L1P9-2 VR8MMF 50

<…> <…> <…> <…> <…> <…> <…> <…> <…>

1 64 1 L1P64-1-S2P16-1 2 16 1 N8S5-L1P56-1 VR8MMF 50

1 64 2 L1P64-2-S2P16-2 2 16 2 N8S7-L1P56-1 VR8MMF 50

2 1 1 L2P1-1-S1P17-1 1 17 1 N9S1-L1P9-1 VR8MMF 50

2 1 2 L2P1-2-S1P17-2 1 17 2 N9S3-L2P9-2 VR8MMF 50

Entries continue per the uplink ports outlined in appendix a…

After installation is complete, assuming you have installed the lldp daemon on each node per appendix E, on each leaf you can

execute a ‘show lldp neighbor’ to confirm correct cabling in the entire cluster.

46

 © Copyright Super Micro Computer, Inc July, 2025.

Appendix D: Server and RNIC Configuration Steps

All servers are running Ubuntu 24.04

BIOS & Grub Settings

Supermicro recommended BIOS settings for the AS-8126GS-TNMR (MI325X):

Here we will present our settings that are based on AMD recommendations at the link below. We do recommend the reader

validate the entries below on that side, as sometimes recommendations are updated for a variety of reasons.

Link to AMD MI300X system documentation and steps (Identical settings to the MI325X solution):

https://rocm.docs.amd.com/en/latest/how-to/system-optimization/mi300x.html#mi300x-bios-settings

Some keys from that more exhaustive link are shared here as key elements in the table below:
BIOS setting location Parameter Value Comments

Advanced / PCI subsystem settings Above 4G decoding Enabled GPU large BAR support.

Advanced / PCI subsystem settings SR-IOV support Enabled Enable single root IO virtualization.

AMD CBS / GPU common options Global C-state control Auto Global C-states – do not disable this menu item).

AMD CBS / GPU common options
CCD/Core/Thread

enablement
Accept May be necessary to enable the SMT control menu.

AMD CBS / GPU common options /

performance
SMT control Disable Set to Auto if the primary application is not compute-bound.

AMD CBS / DF common options / memory

addressing
NUMA nodes per socket Auto Auto = NPS1. At this time, the other options for NUMA nodes per socket should not be used.

AMD CBS / DF common options / memory

addressing
Memory interleaving Auto Depends on NUMA nodes (NPS) setting.

AMD CBS / DF common options / link 4-link xGMI max speed 32 Gbps
Auto results in the speed being set to the lower of the max speed the motherboard is designed to

support and the max speed of the CPU in use.

AMD CBS / NBIO common options IOMMU Enabled

AMD CBS / NBIO common options PCIe ten bit tag support Auto

AMD CBS / NBIO common options / SMU

common options
Determinism control Manual

AMD CBS / NBIO common options / SMU

common options
Determinism slider Power

AMD CBS / NBIO common options / SMU

common options
cTDP control Manual Set cTDP to the maximum supported by the installed CPU.

AMD CBS / NBIO common options / SMU

common options
cTDP 400 Value in watts.

AMD CBS / NBIO common options / SMU

common options

Package power limit

control
Manual Set package power limit to the maximum supported by the installed CPU.

https://rocm.docs.amd.com/en/latest/how-to/system-optimization/mi300x.html#mi300x-bios-settings

47

 © Copyright Super Micro Computer, Inc July, 2025.

BIOS setting location Parameter Value Comments

AMD CBS / NBIO common options / SMU

common options
Package power limit 400 Value in watts.

AMD CBS / NBIO common options / SMU

common options
xGMI link width control Manual Set package power limit to the maximum supported by the installed CPU.

AMD CBS / NBIO common options / SMU

common options
xGMI force width control Force

AMD CBS / NBIO common options / SMU

common options
xGMI force link width 2

• 0: Force xGMI link width to x2

• 1: Force xGMI link width to x8

• 2: Force xGMI link width to x16

AMD CBS / NBIO common options / SMU

common options
xGMI max speed Auto

Auto results in the speed being set to the lower of the max speed the motherboard is designed to

support and the max speed of the CPU in use.

AMD CBS / NBIO common options / SMU

common options
APBDIS 1 Disable DF (data fabric) P-states

AMD CBS / NBIO common options / SMU

common options
DF C-states Auto

AMD CBS / NBIO common options / SMU

common options
Fixed SOC P-state P0

AMD CBS / security TSME Disabled Memory encryption

For the RNIC in this solution, these settings are also needed:

Advanced -> PCIe/PCI/PnP Configuration -> Link Configuration area, set:

• Operational Link Speed: 400Gbps PAM4-112

• Link FEC: RS544

• Port Link Training: Enabled

Finally, to ensure valid connectivity on the cluster, add in the LLDP processes to each node with: “sudo apt-get install lldpd”

Recommended GRUB customization

GRUB settings pulled from the link above:

In any modern Linux distribution, the /etc/default/grub file is used to configure GRUB. In this file, the string assigned to

GRUB_CMDLINE_LINUX is the command line parameters that Linux uses during boot.

It is recommended to append the following strings in GRUB_CMDLINE_LINUX.

pci=realloc=off

With this setting Linux is able to unambiguously detect all GPUs of the MI325X-based system because this setting disables the

automatic reallocation of PCI resources. It’s used when Single Root I/O Virtualization (SR-IOV) Base Address Registers (BARs)

have not been allocated by the BIOS. This can help avoid potential issues with certain hardware configurations.

48

 © Copyright Super Micro Computer, Inc July, 2025.

iommu=pt

The iommu=pt setting enables IOMMU pass-through mode. When in pass-through mode, the adapter does not need to use DMA

translation to the memory, which can improve performance.

IOMMU is a system specific IO mapping mechanism and can be used for DMA mapping and isolation. This can be beneficial for

virtualization and device assignment to virtual machines. It is recommended to enable IOMMU support.

For a system that has AMD host CPUs add this to GRUB_CMDLINE_LINUX:

iommu=pt

Update GRUB

Update GRUB to use the modified configuration:

sudo grub2-mkconfig -o /boot/grub2/grub.cfg

Ubuntu 24.04 PCI BDF & netplan on a sample host for tenant Corona on Leaf1

The default PCI locations for these MI300X/325X & 8 RNICs on the server (corona-node1 as example) are:

root@carona-node1:~# lspci | grep -i -E "nvme|mi300|eth"

Shows the MI300X at:

05:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

26:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

46:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

65:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

85:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

a6:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

c6:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

e5:00.0 Processing accelerators: Advanced Micro Devices, Inc. [AMD/ATI] Aqua Vanjaram [Instinct MI300X]

Shows the single port 400G GPU RDMA NICs at:

1f:00.0 Ethernet controller: Pensando Systems DSC Ethernet Controller

41:00.0 Ethernet controller: Pensando Systems DSC Ethernet Controller

52:00.0 Ethernet controller: Pensando Systems DSC Ethernet Controller

63:00.0 Ethernet controller: Pensando Systems DSC Ethernet Controller

a1:00.0 Ethernet controller: Pensando Systems DSC Ethernet Controller

c1:00.0 Ethernet controller: Pensando Systems DSC Ethernet Controller

d1:00.0 Ethernet controller: Pensando Systems DSC Ethernet Controller

e1:00.0 Ethernet controller: Pensando Systems DSC Ethernet Controller

Shows the 2 port 200G Storage RDMA NICs at:

2f:00.0 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

2f:00.1 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

ce:00.0 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

ce:00.1 Ethernet controller: Broadcom Inc. and subsidiaries BCM57608 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

49

 © Copyright Super Micro Computer, Inc July, 2025.

AMD Instinct MI300X to RNIC RDMA Mapping:
MI300X Local Rank PCIe Slot PCIe Bus Device Function Assigned Ubuntu 24.04 Interface IP Address Assigned Default Gateway

1 1 06:00.0 ens11np0 10.65.0.1/31 10.65.0.0

2 2 27:00.0 ens21np0 10.65.0.3/31 10.65.0.2

3 3 47:00.0 ens31np0 10.65.0.5/31 10.65.0.4

4 4 66:00.0 ens41np0 10.65.0.7/31 10.65.0.6

5 5 86:00.0 ens51np0 10.65.0.9/31 10.65.0.8

6 6 a7:00.0 ens61np0 10.65.0.11/31 10.65.0.10

7 7 c7:00.0 ens71np0 10.65.0.13/31 10.65.0.12

8 8 e6:00.0 ens81np0 10.65.0.15/31 10.65.0.14

Shown below is the relevant portion of one system’s Netplan. We will not include the bonding of the 2 10G inband management

interfaces, the setup of the customer north-south network with DHCP and those switching elements, as those are all very well

understood and established in most customer environments. Here we will focus on the net new RNIC elements within a given

node.

Ideally tooling to configure the IP and subnetting on the leafs, will produce these netplan sections once the slot and

bus:device:function is determined from the lspci above (converting hex to decimal) for each RNIC in a standardized build, for

insertion into automated node provisioning toolsets to scale. Slots 1-8 have cables 2:1 to leaf1 ports Eth 1/9/1-1/12/2 (physical

800G OSFP ports 9-12 on the switch).

network:

 ethernets:

 ens11np0:

 addresses:

 - 100.65.0.1/31

 match:

 macaddress: 7c:c2:55:b9:d0:70

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

 routes:

 -to: 100.65.0.0/16

 via: 100.65.0.0

 set-name: ens11np0

 ens21np0:

 addresses:

 - 100.65.0.3/31

 match:

 macaddress: 7c:c2:55:b9:d1:90

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

50

 © Copyright Super Micro Computer, Inc July, 2025.

 routes:

 -to: 100.65.0.0/16

 via: 100.65.0.2

 set-name: ens21np0

 ens31np0:

 addresses:

 - 100.65.0.5/31

 match:

 macaddress: 7c:c2:55:b9:d2:a0

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

 routes:

 -to: 100.65.0.0/16

 via: 100.65.0.4

 set-name: ens31np0

 ens41np0:

 addresses:

 - 100.65.0.7/31

 match:

 macaddress: 7c:c2:55:b9:d3:00

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

 routes:

 -to: 100.65.0.0/16

 via: 100.65.0.6

 set-name: ens41np0

 ens51np0:

 addresses:

 - 100.65.0.9/31

 match:

 macaddress: 7c:c2:55:b9:d4:70

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

 routes:

 -to: 100.65.0.0/16

51

 © Copyright Super Micro Computer, Inc July, 2025.

 via: 100.65.0.8

 set-name: ens51np0

 ens61np0:

 addresses:

 - 100.65.0.11/31

 match:

 macaddress: 7c:c2:55:b9:d5:90

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

 routes:

 -to: 100.65.0.0/16

 via: 100.65.0.10

 set-name: ens61np0

 ens71np0:

 addresses:

 - 100.65.0.13/31

 match:

 macaddress: 7c:c2:55:b9:d6:a0

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

 routes:

 -to: 100.65.0.0/16

 via: 100.65.0.12

 set-name: ens71np0

 ens81np0:

 addresses:

 - 100.65.0.15/31

 match:

 macaddress: 7c:c2:55:b9:d7:00

 mtu: 9100

 nameservers:

 addresses:

 - 1.1.1.1

 search:

 - maas

 routes:

 -to: 100.65.0.0/16

 via: 100.65.0.14

 set-name: ens81np0

52

 © Copyright Super Micro Computer, Inc July, 2025.

AMD Pensando Pollara RoCEv2 Configuration

This is a concise, quick-start guide focused on what is required to run RCCL tests. It is not meant to replace the user guide –

please refer to the user guide for additional options and configurations required for general performance improvements.

BKC is vendor-dependent and outside the scope of this document. Please ensure that BKC is at the required level for your

specific platform. Here, we will present some of the key steps on the host to enable all the AMD Pensando Pollara 400 RNIC and

Instinct MI325X components with Ubuntu. For complete installation documentation, release notes, user guides, firmware, and

drivers, please contact https://pensandosupport.amd.com/s/login/ to gain access to these resources.

Host Configuration

To ensure valid connectivity on the cluster, add the LLDP processes to each node with: “sudo apt-get install lldpd”

Automatic NUMA balancing is a kernel feature that improves application performance on NUMA hardware by moving tasks

closer to the memory they access and moving application data closer to the tasks that use it. When disabled (set to 0), it

prevents unwanted memory unmapping and can reduce latency in certain workloads.

Check if auto-NUMA balancing is disabled with cat /proc/sys/kernel/numa_balancing or sysctl -a | grep 'kernel.numa_balancing'

this will print 0 if disabled and 1 if enabled. Disable NUMA balancing on each participating host:

sysctl -w kernel.numa_balancing=0

This command only applies the setting temporarily (until reboot). To make this change permanent, you can either:

1. Add the setting to /etc/sysctl.conf:

echo "kernel.numa_balancing=0" | sudo tee -a /etc/sysctl.conf

1. Or modify GRUB settings by adding numa_balancing=disable to GRUB_CMDLINE_LINUX_DEFAULT in /etc/default/grub and

then run sudo update-grub

To achieve optimal performance with Peer Memory Direct, ensure the following system configurations:

• Disable PCIe Access Control Services (ACS):

ACS must be turned off on the PCIe switch that connects the network interface card (NIC) and the GPU. This allows direct

peer-to-peer data transfers between the NIC and GPU over PCIe, bypassing the CPU root complex and maximizing

throughput.

• Configure IOMMU for Best Performance:

For the host system, the IOMMU should either be disabled or set to Pass Through (PT) mode. This minimizes overhead

and ensures efficient peer-to-peer communication between devices.

• For Hosts with AMD CPUs:

Set the IOMMU to PT mode using the kernel command line. This configuration ensures the IOMMU operates in

passthrough mode, which is recommended for optimal Peer Memory Direct performance on AMD platforms.

These steps enable efficient PCIe peer-to-peer transfers between the NIC and GPU, ensuring the best possible performance for Peer
Memory Direct workloads.

Ensure that ACS is disabled by running sudo lspci -vvv | grep -i "acsctl"; ensure that none of the lines show SrcValid+.

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-auto_numa_balancing
https://rocm.docs.amd.com/en/latest/conceptual/iommu.html

53

 © Copyright Super Micro Computer, Inc July, 2025.

setpci -v -s ${BDF} ECAP_ACS+0x6.w=0000
sudo lspci -vvv | grep -i "acsctl"
ACSCtl: SrcValid- TransBlk- ReqRedir- CmpltRedir-
UpstreamFwd- EgressCtrl- DirectTrans-
ACSCtl: SrcValid- TransBlk- ReqRedir- CmpltRedir-
UpstreamFwd- EgressCtrl- DirectTrans-
ACSCtl: SrcValid- TransBlk-

To help with debugging and troubleshooting, it is recommended to override the traditional PCIe BDF

device IDs associated by the kernel and set deterministic names. This can be achieved using

udev rules.

lshw -c network -businfo

Bus info Device Class Description

==

pci@0000:06:00.0 enp6s0 network DSC Ethernet Controller

pci@0000:25:00.3 enp37s0f3 network DSC Ethernet Controller

pci@0000:45:00.3 enp69s0f3 network DSC Ethernet Controller

pci@0000:65:00.3 enp101s0f3 network DSC Ethernet Controller

pci@0000:86:00.0 enp134s0 network DSC Ethernet Controller

pci@0000:a6:00.0 enp166s0 network DSC Ethernet Controller

pci@0000:c6:00.0 enp198s0 network DSC Ethernet Controller

pci@0000:e6:00.0 enp230s0 network DSC Ethernet Controller

Create a custom udev rule in /etc/udev/rules.d.

• Set the KERNEL flag to the PCIe BDF.

• Use a name that is easy to identify.

cat /etc/udev/rules.d/61-persistent-net.rules

ACTION=="add", SUBSYSTEM=="net", KERNELS=="0000:06:00.0" NAME:="ai0"

ACTION=="add", SUBSYSTEM=="net", KERNELS=="0000:26:00.0", NAME:="ai1"

ACTION=="add", SUBSYSTEM=="net", KERNELS=="0000:46:00.0", NAME:="ai2"

ACTION=="add", SUBSYSTEM=="net", KERNELS=="0000:66:00.0", NAME:="ai3"

ACTION=="add", SUBSYSTEM=="net", KERNELS=="0000:86:00.0", NAME:="ai4"

ACTION=="add", SUBSYSTEM=="net", KERNELS=="0000:a6:00.0", NAME:="ai5"

ACTION=="add", SUBSYSTEM=="net", KERNELS=="0000:c6:00.0", NAME:="ai6"

ACTION=="add", SUBSYSTEM=="net", KERNELS=="0000:e6:00.0", NAME:="ai7"

Reload for this to take effect.

Configuring Pollara for RoCE Support

Update speed settings for all Pensando Pollara 400 cards in the host:

nicctl update port --speed 400g

Update FEC settings for all Pensando Pollara 400 cards in the host:

nicctl update port --fec-type rs|fc|none

Update MTU settings for all Pensando Pollara 400 cards in the host:

54

 © Copyright Super Micro Computer, Inc July, 2025.

nicctl update port --mtu <bytes>

Note: Valid MTU ranges are 1500 to 9216.
When Pollara is configured for RoCE, it’s important to configure the proper DCQCN settings:

• RoCE v2 packets are assigned a DSCP value of 26 and internally use Priority 3

• CNP packets are assigned a DSCP value of 48 and internally use Priority 7

• PFC is enabled specifically for Priority 3 traffic

• Three traffic classes are established:
o TC0 for non-RoCE traffic
o TC1 for RoCE traffic
o TC2 for CNP traffic

RoCE and non-RoCE traffic each receive a 50% share of ETS (Enhanced Transmission Selection) bandwidth, with dynamic
allocation—when one traffic type is absent, the other can utilize the full available bandwidth.

CNP traffic receives ETS Strict Priority treatment

Enabling PFC Classification and Priority Mappings
PFC is a flow-control mechanism used to prevent packet loss during congestion. PFC works by
pausing the traffic on virtual-queues which are mapped/classified based on the PCP (3-bit Cos)
in the VLAN header or DSCP (6-bits) in the IP header.

Enable PFC on the port by configuring --pause-type pfc and --rx\tx-pause enable

on the port for the required card:

nicctl update port \

-port 04908126-83f8-4242-4242-000011010000 \

--pause-type pfc \

--rx-pause enable \

--tx-pause enable

To enable PFC on all ports in a system, use the following bash script.

for i in $(sudo nicctl show port | grep Port | awk {'print

$3'}); do sudo nicctl update port -p $i --pause-type pfc --rx-pause enable -

-tx-pause enable; done

Configure the QoS classification type to PCP:

Note: The classification type must be set before configuring priority mappings.

Configure the pcp-to-priority mappings:

nicctl update qos pcp-to-priority \

-port 04908126-83f8-4242-4242-000011010000 \

--pcp 3 \

--priority 3

Configure no-drop for the priorities required:

nicctl update qos --classification-type pcp

55

 © Copyright Super Micro Computer, Inc July, 2025.

nicctl update qos pfc \

-port 04908126-83f8-4242-4242-000011010000 \

--priority 3 --no-drop enable

Note: Currently 2 no-drop priorities are supported.

Restart the port:

nicctl update port\

-port 04908126-83f8-4242-4242-000011010000 \

--admin-state up

Check the QoS configuration and verify the classification type, priority mappings and PFC priority bitmap:

nicctl show qos

NIC : 42424650-4c32-3433-3930-303630000000 (0000:61:00.0)

Port: 04908126-83f8-4242-4242-000011010000

Classification type : PCP

PCP-to-priority :

PCP : 00, 04, 05, 06, 07 ==> priority : 0
PCP : 01 ==> priority : 1
PCP : 02 ==> priority : 2
PCP : 03 ==> priority : 3

PFC priority bitmap : 0x8

Scheduling :

Priority Scheduling

Type

Bandwidth

(in %age)

Rate-limit

(in Gbps)

0 none N\A N\A

1 none N\A N\A

2 none N\A N\A

3 none N\A N\A

Individual commands can also be used to verify the configuration details:

nicctl show qos --classification-type

2424650-4c32-3433-3930-303630000000 0000:61:00.0

04908126-83f8-4242-4242-000011010000 PCP

nicctl show qos pcp-to-priority

NIC : 42424650-4c32-3433-3930-303630000000 (0000:61:00.0)

Port: 04908126-83f8-4242-4242-000011010000

pcp: 00, 04, 05, 06, 07 ==> priority: 0

cp: 01 ==> priority: 1

cp: 02 ==> priority: 2

cp: 03 ==> priority: 3

NIC

Port

PCIe BDF

Classification type

56

 © Copyright Super Micro Computer, Inc July, 2025.

nicctl show qos pfc

42424650-4c32-3433-3930-303630000000 (0000:61:00.0)

04908126-83f8-4242-4242-000011010000 3

You can also verify that the port is receiving pause frames and the Pause Type is PFC using:

nicctl show port --brief

Enabling DSCP Classification and Priority Mappings

Depending on the user traffic profile, the following steps can be used to

• Map multiple DSCP values to the same or different priority queues.

• Supports two priority queues as no-drop.

By enabling QOS classification-type to DSCP, all DSCP values (0-64) gets mapped to queue 0 by
default. To allow any queue other than 0 to be no-drop, map the DSCP value to the queue before
configuring it as no-drop, as displayed below.

The following example
• Maps DSCP value 26 to priority queue 3 and configures queue 3 as no-drop.
• Maps RDMA-ACK to different priority queues using the CLI displayed below.
Configure the classification-type to DSCP:

nicctl update qos --classification-type dscp

Note: The classification type must be set before configuring priority mappings.

Configure the dscp-to-priority mappings:

nicctl update qos dscp-to-priority --dscp 26 --priority 3

nicctl update qos dscp-to-purpose --dscp 26 --purpose data

Configure no-drop for the priorities required:

nicctl update qos pfc --priority 3 --no-drop enable

Configure RDMA-ACK to a different priority queue

nicctl update qos dscp-to-priority --dscp 48 --priority 7

nicctl update qos dscp-to-purpose --dscp 48 --purpose rdma-ack, xccl-cts

nicctl update qos pfc --priority 7 --no-drop enable

NIC

Port

PCIe BDF

No-drop priorities

57 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July, 2025

Note:
Currently, 2 no-drop priorities are supported.
DSCP to priority mapping is mandatory prior to enabling no-drop
Enabling a no-drop on a Specific Port

nicctl update port -p 0490812b-0218-4242-4242-000011010000 --pause-type

pfc --rx-pause enable --tx-pause enable ==> Port Level enable PFC both

RX and TX

nicctl update qos --classification-type dscp

nicctl update qos dscp-to-priority --dscp 26 --priority 3

nicctl update qos dscp-to-purpose --dscp 26 --purpose data

nicctl update qos pfc --priority 3 --no-drop enable

nicctl update qos dscp-to-priority --dscp 48 --priority 7

nicctl update qos dscp-to-purpose --dscp 48 --purpose rdma-ack, xccl-cts

nicctl update qos pfc --priority 7 --no-drop enable

DSCP configuration can be verified with nicctl show qos CLI. This shows the summary of the QoS configuration.

Following our configuration example above, we can confirm that DSCP 26 has been mapped to

priority queue 3 and PFC has been enabled for priority queue 3.

nicctl show qos

NIC : 42424650-4d32-3530-3830-303135000000 (0000:03:00.0)

Port : 0490812f-06a0-4242-4242-000011010000

Classification type : DSCP

 DSCP-to-priority :

 DSCP bitmap : 0xfffefffffeffffff ==> priority : 0

 DSCP bitmap : 0x0001000000000000 ==> priority : 1

 DSCP bitmap : 0x0000000001000000 ==> priority : 3

 DSCP : 0-23, 25-47, 49-63 ==> priority : 0

 DSCP : 48 ==> priority : 1

 DSCP : 26 ==> priority : 3

 DSCP-to-purpose : 26 ==> data

 : 48 ==> rdma-ack, xccl-cts

 PFC :

 PFC priority bitmap : 0xa

 PFC no-drop priorities : 1,3

 Scheduling :

 --

58 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July, 2025

 Priority Scheduling Bandwidth Rate-limit

 Type (in %age) (in Gbps)

 --

 0 DWRR 0 N/A

 1 DWRR 0 N/A

 3 DWRR 0 N/A

In this example configuration, priorities 0, 1 and 5 are DWRR queues with respective bandwidth percent of 70%, 10% and 20%.

Priority 6 is strict priority with a rate limiter of 10 Gbps.

nicctl update qos scheduling \

--priority 0,1,5,6 \
--dwrr 70,10,20,0 \

--rate-limit 0,0,0,10

Recommended DCQCN Configuration

DCQCN Parameter Description
Recommended Value

--profile-id DCQCN profile id 1

--ai-rate Rate increase in AI phase 5

--alpha-update-interval Alpha update interval 55

--clamp-target-rate Clamp target rate disable

--rate-increase-threshold Rate increase threshold 5

--rate-increase-byte-count Rate increase byte count 131068

--rate-increase-interval Rate increase in AI phase 5

--alpha-update-g Alpha update G value 2

--min-rate Minimum rate 1

--token-bucket-size Token bucket size 8000000

--rate-increase-interval Rate increase interval 5

--hai-rate Rate increase in HAI phase 50

--initial-alpha-value Initial alpha value 20

--cnp-dscp DSCP value used for CNP 48

--rate-reduce-monitor-period Rate reduce monitor period 50µs

Update Data Center Quantized Congestion Notification (DCQCN) configuration.

nicctl update dcqcn \
--roce-device rocep13s0 \

--profile-id 1 \
--alpha-update-interval 55 \
--token-bucket-size 8000000 \

--rate-increase-byte-count 131068 \
--alpha-update-g 2 \

59 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July, 2025

--clamp-target-rate disable \
--rate-increase-threshold 5 \

--rate-increase-interval 5 \
--min-rate 1 \
--hai-rate 50 \

--initial-alpha-value 20 \
--cnp-dscp 48 \
--rate-reduce-monitor-period 50 \

--ai-rate 5

Perform the following final checks to confirm the software, firmware, tools, and settings are configured correctly for optimal Peer
Memory Direct performance:

1. Verify the kernel modules ionic_driver, ionic_rdma, and ib_peer_mem.ko) are loaded and of the correct version.

Note: Some Ubuntu kernels have built-in ib_peer_mem support and don't require AMD’s module. The kernel driver

Makefile will detect and build accordingly.

2. Ensure the AMD GPU driver (amdgpu.ko) is loaded.

3. Confirm PCIe Access Control Service (ACS) is disabled on the PCIe switch connecting the NIC and GPU. ACS must be

disabled to enable PCIe peer-to-peer transactions between GPU and NIC, as enabling ACS can degrade performance.

4. Verify IOMMU is disabled or set to Pass-Through (PT) mode.

5. Confirm the following standard InfiniBand commands run successfully (included in the infiniband-diags package, available

through your OS distro's package manager):

o ibstatus

o ibv_devinfo -vvv

o ibdev2netdev

6. Confirm Pensando Pollara configuration settings for RDMA/RoCE defined above are complete, and PCIe Relaxed

Ordering. (nicctl show qos)

7. Ensure the Pensando Pollara interface link is active and operating at the correct speed, verified using:

o ibstatus

o ethtool <ifname>

Confirm the NIC interface has an assigned IP address, visible as GID 3 (IPv4 or IPv6) through the commands:

Final Checks

Perform the following final checks to confirm the software, firmware, tools, and settings are configured correctly for optimal Peer
Memory Direct performance:

1. Verify the kernel modules ionic_driver, ionic_rdma, and ib_peer_mem.ko) are loaded and of the correct version.

Note: Some Ubuntu kernels have built-in ib_peer_mem support and don't require AMD’s module. The kernel driver

Makefile will detect and build accordingly.

2. Ensure the AMD GPU driver (amdgpu.ko) is loaded.

3. Confirm PCIe Access Control Service (ACS) is disabled on the PCIe switch connecting the NIC and GPU. ACS must be

disabled to enable PCIe peer-to-peer transactions between GPU and NIC, as enabling ACS can degrade performance.

4. Verify IOMMU is disabled or set to Pass-Through (PT) mode.

5. Confirm the following standard InfiniBand commands run successfully (included in the infiniband-diags package, available

through your OS distro's package manager):

o ibstatus

60 © 2025 Copyright Super Micro Computer, Inc. All rights reserved July, 2025

o ibv_devinfo -vvv

o ibdev2netdev

6. Confirm Pensando Pollara configuration settings for RDMA/RoCE defined above are complete, and PCIe Relaxed

Ordering. (nicctl show qos)

7. Ensure the Pensando Pollara interface link is active and operating at the correct speed, verified using:

o ibstatus

o ethtool <ifname>

8. Confirm the NIC interface has an assigned IP address, visible as GID 3 (IPv4 or IPv6) through the commands:

o rdma link show

o ibv_devinfo -vvv

o dfadfasdfad

o ibv_devinfo -vvv -d <roce_interface_name>

8. Set the host interface MTU size to 9000 bytes for maximum throughput.

9. Configure the Ethernet switch port connected to the Pollara with an MTU size of at least 9000 bytes.

10. Validate the PCIe slot for the Pollara reports the correct PCIe generation speed and lane width:

o lspci -vvv -s <B:D:F>

12. Disable firewalls on communicating hosts if they block RDMA connection setup.

13. Confirm the Linux dmesg logs contain no NIC- or GPU-related errors.

For More Information:

https://www.supermicro.com/en/products/networking

https://www.supermicro.com/en/products/aplus

AMD

For more than 50 years AMD has driven innovation in high-performance

computing, graphics and visualization technologies. Billions of people,

leading Fortune 500 businesses and cutting-edge scientific research

institutions around the world rely on AMD technology daily to improve

how they live, work and play. AMD employees are focused on building

leadership high-performance and adaptive products that push the

boundaries of what is possible. For more information about how AMD is

enabling today and inspiring tomorrow, visit the AMD (NASDAQ: AMD)

website, www.amd.com

SUPERMICRO

As a global leader in high performance, high efficiency server technology

and innovation, we develop and provide end-to-end green computing

solutions to the data center, cloud computing, enterprise IT, big data,

HPC, and embedded markets. Our Building Block Solutions® approach

allows us to provide a broad range of SKUs, and enables us to build and

deliver application-optimized solutions based upon your requirements.

https://www.supermicro.com/en/products/networking
https://www.supermicro.com/en/products/aplus
http://www.amd.com/

