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Summary 
 
STAC recently audited STAC-ML Markets (Inference) benchmark tests on a stack consisting of STAC-ML™ 
pack for CUDA and cuDNN running on an NVIDIA GH200 Grace Hopper Superchip with 96GiB HBM3 480GiB 
LDDR5 memory connected with NVLINK C2C in a Supermicro SuperServer® ARS-111GL-NHR. This report 
provides test results related to the performance, efficiency, and quality of the algorithms in the benchmark 
implementation. It also describes the solution that was tested and salient aspects of the test project. 
 
STAC-ML Markets (Inference) is the technology benchmark standard for solutions that may be used to run 
inference on realtime market data. Designed by quants and technologists from some of the world's leading 
financial firms, STAC-ML Markets (Inference) reports the performance, resource efficiency, and quality of any 
technology stack capable of performing inference using the provided models. The specifications are agnostic to 
the architectures of the stack under test (SUT), inference engine, and underlying precision of the computations. 
This report highlights results from the sliding-window suite (code named Tacana). See the Overview later in this 
report for more background. 
 
Benchmarks that use realistic workloads to measure business-relevant dimensions of performance help firms 
make sense of a wide variety of technology stacks. The STAC Benchmark Council1 has created and maintained 
such benchmarks—STAC Benchmarks™— for over a decade for other business-critical analytic workloads such 
as derivatives valuation, strategy backtesting, and enterprise tick analytics.2  
 
These tests were performed using an NVIDIA-authored STAC Pack. The STAC Pack used comprises a custom 
C++ driver compiled with gcc 11.4.0, the NVIDIA CUDA toolkit 12.0, and the NVIDIA CUDA Deep Neural Network 
library (cuDNN) 9.10.2. For more information on the implementation and the system on which it was tested, see 
Section 3. 
 
In all, the STAC-ML Markets (Inference) specifications deliver scores of test results, which are detailed in this 
report and accompanying notebooks. Supermicro and NVIDIA would like to point out the following: 
 
Compared to a previous SUT submitted by Myrtle.ai (MRTL230426) on FPGAs, this SUT featuring an NVIDIA 
GH200 Superchip in a Supermicro ARS-111GL-NHR server demonstrated the following:  

 For LSTM_A (the smallest model) the 99p latency was between 7% and 20% lower 
o 7% lower with 1 NMI (4.70μs vs. 5.07μs) 
o 20% lower with 8 NMI (4.67μs vs 5.97μs) 
o The 99p error benchmark was 8 times lower (0.00111 vs 0.00889) 

  
 For LSTM_B (the medium model) the 99p latency was between 3% higher and 8% lower 

o 3% higher with 1 NMI (7.10μs vs. 6.89μs) 
o 8% lower with 4 NMI (7.10 μs vs 7.73μs) 
o The 99p error benchmark was 12 times lower (0.00102 vs 0.0127) 

  
 For LSTM_C (the largest model) with 1 NMI: 

o The 99p latency was 49% lower (15.8μs vs. 31.0μs) 
o The throughput was 15% higher (3,910 vs. 3.387) 
o The 99p error benchmark was 13 times lower (0.00172 vs 0.0237) 
o The energy efficiency was 44% higher (8,312 vs 5,785) 

  
 The largest ratio of maximum to median latency is 9.65 ~ 38.3μs / 3.97μs (occurs at LSTM_A with 

NMI=8). The smallest ratio of maximum to median latency is 2.16 ~ 32.2μs / 14.9μs (occurs at 
LSTM_C with NMI=1). 

  

 
1  www.STACresearch.com/council 
2  See www.STACresearch.com/a2, www.STACresearch.com/a3, and www.STACresearch.com/m3, respectively. 
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Vendor Commentary 
 
Supermicro provided the following comments: 
 
The audit was performed on a server equipped with a single GPU, highlighting the solution's efficiency in 
environments with strict space and energy constraints, such as market colocation. Our results demonstrate that 
multiple independent instances can be executed simultaneously on a single GPU by utilizing green contexts and 
concurrent CUDA streams. 
 
We would like to highlight that this stack achieves not only comparable (LSTM B) or lower latencies than all 
previous submissions —including those using FPGAs—at the 99th percentile of the measured distribution but 
also avoids extreme outliers, i.e., the maximum latency is less than 10 times the median latency for all workloads.  
Consequently, the most extreme latency measurements are near the median, making them predictable. In 
addition, our solution consistently demonstrates superior accuracy. 

The stack under test 
Any stack under test SUT to be assessed by STAC-ML Markets (Inference) benchmarks has two layers: 
 

 An implementation of the benchmarks. This is software and/or firmware that implements the 
Workloads and other logic required by the benchmark specifications. For example, this could be a 
software program written in C++, VHDL code for an FPGA, an Inference Engine, scripts, etc. It is 
delivered with documentation in a "STAC Pack". 

 Other hardware and software required to carry out the operations defined by the benchmark 
specification, including processors, accelerators, memory, operating system, compiler, math 
libraries, etc. 

 
The next two sections discuss each layer in turn. 

Understanding this implementation of STAC-ML Markets (Inference) 
This project used a STAC-ML Markets (Inference) Implementation developed by NVDIA, called the STAC-ML 
Markets (Inference) Pack for CUDA and cuDNN. The source code is available to qualified STAC subscribers. 
NVIDIA provided the following description: 
 
This implementation of STAC-ML showcases the NVIDIA H200 GPU and Grace CPU, our flagship data center 
product for AI workloads. The code was developed in C++20 code. The implementation uses some of the highly 
optimized libraries delivered with CUDA:  

 cuBLAS: the GPU-enabled implementation of the linear algebra package BLAS  
 CUDA Streams: enables running multiple kernels in parallel on a single device  
 CUDA Graphs: removes kernel launch overhead  
 CUDA Green contexts: allow to serve multiple instances with consistent latencies 

 
The benchmark consists of two distinct phases: 

 Precomputation: 
This stage produces the necessary inputs for the final time step of the sliding window LSTM. Notably, 
this precomputation phase is excluded from all latency timing measurements. But not from the 
throughput measurements. 

 Inference: 
In this phase, the last LSTM time step is processed using new input data.  

Inference Implementation 
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Inference utilizes a persistent kernel approach, ensuring the kernel remains active for the entire duration of the 
application. This persistence enhances performance by loading weights into shared memory and registers just 
once during kernel initialization. 

 Timing is coordinated by CPU, as specified by the benchmark. 

 Synchronization between host and device employs standard CPU/GPU synchronization primitives. 

 The host signals the device when new input arrives in host memory and simultaneously starts the timer. 

 The kernel polls for this signal, then reads the input and initiates computation. 
 The computed floating-point output also acts as the host's signal to stop the timer. 

 
Maximizing Throughput: 

To further boost throughput when handling multiple NMIs, each persistent kernel is launched within its own green 
context. Every green context is managed by an independent CPU thread. 

 

Understanding the rest of the SUT 
The implementation relied on the following other key components in this project: 
 

 NVIDIA CUDA Toolkit 12.9 
 NVIDIA CUDA Deep Neural Network library (cuDNN) 9.10.2 
 Supermicro ARS-111GL-NHR 

 NVIDIA 72-core NVIDIA Grace CPU on GH200 Grace Hopper™ Superchip @ 3.1Ghz 
 Integrated H100 GPU using NVLink® Chip-2-Chip (C2C) 900GiB/s interlink  
 480GiB of ECC LPDDR5X  memory  @ 6400Mhz 
 96GiB of  ECC HBM3 memory 

 Ubuntu 22.04.5 LTS Server with HWE kernel 
 
A detailed STAC Configuration Disclosure [2] for the SUT in this report is available to qualified STAC subscribers. 
That document provides the exact product version numbers, detailed tuning options, and other important 
information. Additional configuration details such as a sosreport may also be available, depending on the SUT 
platform.  
 
The server in the SUT was configured to mitigate the full range Spectre/Meltdown threats. 

Supermicro provided the following information about its products used in this SUT: 
 
The ARS-111GL-NHR (https://www.supermicro.com/en/products/system/gpu/1u/ars-111gl-nhr)  is a 
powerful 1U GPU system specifically engineered for demanding AI workloads, which makes it highly 
relevant for the STAC-ML Markets Inference benchmark, focusing on high-frequency, low-latency 
financial inference. Its core capability lies in the integrated NVIDIA GH200 Grace Hopper Superchip, 
which combines the NVIDIA Grace CPU and a high-performance NVIDIA Hopper GPU with 900 GB/s 
NVLink Chip-2-Chip (C2C) interconnect.  
  
This single-node, high-density architecture is crucial for the Tacana suite's requirement for extremely 
low and predictable 99th-percentile latency in continuous, sliding-window inference on time-series 
data.  
  
Features supporting this include up to 576 GB of coherent memory (including 96 GB HBM3 for the 
GPU) for handling large models like those used in LLMs, and PCIe 5.0 x16 slots to support high-speed 
networking like NVIDIA BlueField-3 or ConnectX-7 DPUs, which are vital for ultra-low-latency market 
data processing and feed handling—key aspects of optimizing for STAC-ML inference benchmarks. 
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Supermicro has a long-standing history of providing high-performance, purpose-built server solutions 
for AI and machine learning workloads, including those in the financial sector. Our expertise is reflected 
in our robust, application-optimized systems that are designed to deliver exceptional performance on 
industry benchmarks like the STAC-ML Markets Inference benchmarks. 
 

 
NVIDIA provided the following information about its products used in this SUT: 

 
The NVIDIA GH200 Grace Hopper Superchip broadens the robust 64-bit Arm processor ecosystem, 
supporting a wide range of containers, application binaries, and operating systems—these run 
seamlessly on Grace Hopper without the need for modification. The Superchip is fully compatible with 
the NVIDIA software suite, including NVIDIA HPC and AI platforms. The advanced Hopper architecture, 
offering a theoretical peak of 67 TFlops for single-precision and 34 TFlops for double-precision 
operations with its 16,896 CUDA cores. It also includes 528 fourth-generation TensorCore modules, 
delivering up to 990 TFlops for FP16/BF16 computations. Employing CoWoS HBM3 technology, the 
Hopper GPU integrates compute and memory within a single silicon package, which results in 
approximately double the memory bandwidth compared to the Ampere A100 generation. Its distributed 
shared memory feature minimizes kernel latency by enabling direct SM-to-SM communication for loads, 
stores, and atomics across multiple SM shared memory blocks. Equipped with 96 GiB CoWoS HBM3, 
the GPU achieves a maximum theoretical memory bandwidth of 4 TB/s, and interfaces with the Grace 
CPU at up to 900 GB/s via memory-coherent NVIDIA C2C NVLink. 
 

Project contributors and their roles 
 
The following firms contributed to this project: 
 

 Supermicro 
 NVIDIA 
 STAC 

 
The Project Participants had the following responsibilities: 
 

 NVIDIA wrote the STAC-ML Pack in accordance with the STAC-ML Markets (Inference) 
benchmark specifications; provided the SUT server, the GPU, test lab, and power- and 
temperature-monitoring equipment; configured the hardware and software. 

 Supermicro provided server specifications and sponsored the report.  

 STAC edited the final STAC Report and STAC Configuration Disclosure, based on information 
provided by the sponsor(s).  

 

Contacts 


 Supermicro: financialservices@supermicro.com 

 NVIDIA: nmarkovskiy@NVIDIA.com 

 STAC: info@STACresearch.com 
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Overview of the STAC-ML Markets (Inference) benchmark 
specifications 

Business context 
Financial firms sometimes develop neural network models to analyze time series of market data. They then use 
those models to run inference on incoming realtime market data. Such inference is latency sensitive and usually 
occurs in datacenters co-located with exchanges.  
 
There are several use cases for co-located inference, such as valuations used in high frequency market making, 
price predictions for short- and medium-term position taking, creating price bands for pre- and post-trade risk 
checks, automated hedging and position reduction, and brokers generating fair-value prices that are used to 
make firm prices to their customers. 
 
The benchmarks in this project are the first set of STAC-ML Markets benchmarks. They address a use case in 
which a solution performs inference using one or more instances of the same model, each operating on different 
streams of input data. For example, a firm might apply a single equities prediction model to multiple portfolios 
with different constituent equities. 

Scope 
For a given SUT, the objective is to measure the upper-bound performance of inference only. While end-to-end 
inference performance in the real world also depends on tasks such as data ingest, parsing, feature creation, 
and sometimes online retraining, the working group responsible for developing the benchmark decided that it 
would be most helpful to study the performance of these tasks separately.3  
 
Some use cases call for minimum latency, while others call for maximum throughput or power/space-efficiency 
at an acceptable latency. A single solution may be capable of providing different tradeoffs depending on its 
configuration. For a given configuration, the goal of the benchmarks is to measure the upper-bound of 
performance and efficiency, thus elucidating the theoretical limits that a solution involving more functions could 
provide in the real world. 
 
In order to satisfy the requirement to measure upper-bound performance, the workload is consumption driven. 
That is, rather than being forced to react to an asynchronous event stream (as in other realtime STAC 
Benchmarks), the SUT accepts each new input set as it completes the last. This eliminates queuing of inbound 
data from the latency measurement. 

Benchmark construction 
Models 
 
For this use case, the STAC-ML Working Group chose a set of Stacked LSTM models that take a window 
consisting of N timesteps of M features and predict a single value per window. Similar to algorithms in other 
STAC Benchmarks, the models do not represent a production-ready strategy but were chosen by the Working 
Group because they induce workloads similar to those of real-world models. 
 
The current benchmark suite includes three LSTM Models, which are variations of the Stacked LSTM mentioned 
above, each with a unique combination of features, timesteps, layers, and units/layer: 
 

 Number of timesteps: The amount of history affects the amount of data transferred to the inference 
engine. Since LSTM inference is sequential, the number of timesteps has a direct impact on inference 

 
3  The performance characteristics of some tasks, such as low-latency market data parsing, are already well understood. 

See www.STACresearch.com/m1 for benchmarks the STAC Benchmark Council established in this domain long ago. 
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latency. 
 

 Number of features: This number also affects the amount of data transferred and has some effect on 
model size. However, for LSTM models, the number of features only affects the complexity of the 
initial LSTM layer. Increasing the number of features and the complexity of the model (as measured by 
the following two metrics) would likely go hand-in-hand in a real-world application. 
 

 Layers: The number of LSTM layers directly impacts the model size and given the sequential 
evaluation of layers, has an equally direct impact on inference latency. 
 

 Units/Layer: The number of units per layer also directly impacts model size, even though an 
implementation can parallelize the computation of a layer. 

 
The three models are LSTM_A, LSTM_B, and LSTM_C. Relative to LSTM_A, LSTM_B is roughly 6 times the 
size and LSTM_C is roughly 2 orders of magnitude bigger. As the size of the model grows, features, 
timesteps, layers and units/layer either grow or remain the same. 
 
For each LSTM Model there is a corresponding LSTM Null Model designed to elucidate the platform and 
communication overhead of the system. An LSTM Null Model performs a bare minimum of computation. Each 
LSTM Null Model requires the same number and shape of inputs as its corresponding LSTM Model and produces 
the same number and shape of outputs.  
 
Understanding the STAC-ML Markets (Inference) Benchmark Suites 
 
The STAC-ML Markets (Inference) Benchmark Specifications comprise 2 separate suites: Sumaco and Tacana. 
These two suites are identical in many respects. The suites differ primarily in how implementations handle data 
and the rules regarding the re-use of computations. Data generation, benchmark models, and performance, 
quality, and efficiency metrics are identical between the two suites. 
 
In the benchmark specifications, the SUT performs inference on rectangular (Timesteps x Features) arrays 
(windows) of data. In the Sumaco suite, each full window of contiguous data is selected randomly from a larger 
data array and transmitted in whole to the Inference Engine. This suite models a use case where an external 
event invokes an inference based on the most recent history prior to the event. The Sumaco suite does not allow 
any pre-computation or reuse of computations from window to window. This inference approach is typically 
supported in generic Inference Engines (e.g., ONNX, TensorFlow) for evaluating the LSTM models that the 
benchmark specifications define. 
 
In the Tacana suite, inference is performed on a sliding window. Each inference operation inserts the newest 
randomly-selected (1 x Features) vector into the window while removing the least recent (1 x Features) vector 
from the window prior to inference on the entire window. This suite models a use case where inference is 
performed on every tick or bar of market data using a fixed-length history of the most recent input data. In the 
Tacana suite, the SUT may choose to only transmit the most recent Timestep of data to the Inference Engine–
reducing data overhead for SUTs based on external accelerators—and manage the sliding windows in the 
Inference Engine. The SUT can also re-use computations based on any of the data that remains in the window. 
SUTs that implement the Tacana suite will likely use custom Inference Engines. 
 
 
Workloads 
 
A Workload is the combination of a Model and Number of Model Instances (NMI) simultaneously performing 
inference. While the benchmark requires every SUT to execute each of the Models, the SUT provider chooses 
the NMI. 
 
SUT providers will often benchmark multiple Workloads for each Model to demonstrate interesting tradeoffs in 
latency, throughput, and efficiency. For example, CPUs may be able to reduce latency by parallelizing small 
NMI, or FPGAs may move from loop-unrolled to iterative designs as the NMI increases. 
 
Test framework 
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At a high level, generating STAC-ML Markets (Inference) benchmark results requires four things:  
 

1. An Implementation. This is the logic that carries out the algorithms and measurements specified by 
STAC-ML Markets (Inference). It is described in Section 3.1. 

2. Something on which to run the Implementation (whatever hardware and software is required). It is 
described in Section 3.2. 

3. The STAC-ML Markets (Inference) Orchestration Scripts. These scripts direct the Implementation 
through all of the performance and quality test sequences required by the benchmark specifications, 
telling it at each step what algorithm to run, what problem size to use, etc. 

4. A general-purpose processor on which to run the Orchestration Scripts. 
 
#1 and #2, taken together, form the SUT, as shown in Figure 1. The general-purpose processor in #4 may or 
may not be part of the SUT. The SUT may also host the Orchestration Scripts (which occupy a tiny amount of 
memory), or those scripts can run remotely. 
  
 

 

Figure 1 – High-level benchmark diagram 
 
The Driver is the application that drives the benchmark operations. The Driver runs on a general-purpose CPU. 
The Inference Engine implementation may be completely contained within or linked with the Driver or distributed 
across other processes on the host CPU or accelerators. If the SUT uses one or more accelerators, the Driver 
calls out to the accelerator(s). 
 
The rest of the Driver is benchmark-specific code written by the Implementation Provider that takes instruction 
from the Orchestration Scripts. STAC checks Drivers for conformance to specifications through code inspection 
and “black box” validation. 
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During test runs, the Driver provides a unique stream of features to each Model Instance (selected from the 
same in-memory store of input features). An Implementation Provider may implement a Model Instance in one 
of two ways: 1) as a single copy of the defined model, with inferences occurring serially, or 2) as multiple copies 
of the defined model, inferring in parallel or in a pipelined fashion. In either mode inferences may be processed 
singly or in batches. For a given workload on a given SUT, all Model Instances have the same construction. 
 
The Driver locates either a full window of data (Sumaco) or a single timestep of data (Tacana) for each Model 
Instance, using a random selection scheme. As soon as it locates the data, the Driver obtains a timestamp 
(tsupply), which it stores in memory. 
 
The Driver then does whatever is necessary to enable the Inference Engine to operate on the full data window 
(Sumaco) or sliding data window formed by the incoming timestep (Tacana). The Inference Engine always 
requires a complete window of features to perform inference. In the Tacana suite the Driver author is free to 
transfer the required data in whatever way is most efficient for the architecture (e.g., transfer a given timestep 
only once vs. transfer it multiple times as part of each window that includes it). 
 
Once the Inference Engine returns the Inference Result, the Driver ensures proper ordering (which may require 
some work, as multiple inferences may be in-flight simultaneously), then obtains a second timestamp (tresult), 
which it stores in memory. 
 

After a test run, the Driver persists the inferences and timestamps to a file for analysis. 
 

Metrics 
For a given SUT, the objective is to measure inference in isolation. End-to-end inference performance in the real 
world also depends on tasks such as data ingest, parsing, feature creation, and sometimes online retraining, but 
the Working Group believed it is most helpful to study those tasks separately. 
 
The performance metrics of interest are latency and throughput of inference when various numbers of Model 
Instances are running on the SUT. As resources in co-located datacenters come at a premium, power and space 
efficiency metrics are also important. The quality of inference results is also of key interest.  
 
Latency, throughput, and efficiency are only reported for the Inferring Period, which is a fixed amount of time in 
a test run following a vendor-specified warm-up time. 
 
Latency 
 
Inference latency is the elapsed time to produce a single inference result (tresult - tsupply). Note that this latency 
definition does not include the time to select the inference data or store the results in memory, which is 
considered external to the work to be measured. However, latency does include the time it takes to transfer data 
to and from the inference engine, including transfer time to any accelerators the SUT uses. Also, since inference 
results are required to be returned in the order of the triggering timestep, latency for parallel implementations 
may include waiting for the inference results of previously provided timesteps. Latency is only reported for 
inferences that take place after a SUT-specfic warmup time is complete. 
 
Software timestamps have two potential sources of latency-measurement error:  
 
1) Host clock error. The frequency error and timer resolution of the host clock must combine to less than the 
least significant digit reported for latency measurements. The Configuration Disclosure [2] provides details on 
the timer call used in the source code and the underlying OS timer used for latency measurements.  
 
2) Application-level error. Often the largest errors in software latency measurement are due to delays between 
the moment the application code asks for a timestamp and the moment the timestamp is assigned to an event. 
These range from small delays due to the timestamping instructions and much larger delays caused by task 
switching. However, in STAC-ML Markets (Inference), the call to acquire the timestamp for tsupply must be 
completed before any of the measured operation begins, which means that any timestamp-assignment delays 
can only increase reported latency. Likewise, the call to acquire the timestamp for tresult cannot begin until the 
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entirety of the measured operation is completed, which means that any delays between assignment and return 
of the timestamp also serve to increase reported latency. The positioning of the timestamp calls is verified by 
code review. In other words, the reported latencies are conservative measurements. 
 
Throughput 
 
Throughput is the number of inferences returned during the Inferring Period divided by the duration of the 
Inferring Period, reported as inferences per second. Two throughput metrics are of interest: 
 

 Total Throughput is the throughput of the entire SUT, averaged across all test runs. 
 For a given Workload, the worst-case Instance Throughput is the lowest Throughput exhibited by any 

instance in any test run. 
 
Error 
 
The measure of error is the absolute difference between the SUT’s inference values and the corresponding 
inference values obtained by the Quality Reference implementation. The test harness reports statistics on these 
measurements across all Model Instances and test runs for a given Workload to derive a single Error metric. 
The specifications do not impose a minimum standard for Error. See “SUT Flexibility”, below, for details. 
 
Efficiency 
 
For SUTs not hosted in a public cloud, there are two types of efficiency metrics: energy and space. The 
benchmark defines ways to measure the energy and space consumed by the SUT, as well as metrics that relate 
that consumption to the total throughput (i.e., the SUT's efficiency). For SUTs hosted in a public cloud, the dollar 
cost of the resources in the SUT during a test replaces energy and space. 

SUT Flexibility 
STAC-ML Markets (Inference) provides the SUT provider with great latitude in choosing what to test:  
 

 The specs place no constraints on the architecture of the SUT, except that it must be controllable by the 
Orchestration Scripts, maintain the inputs and outputs in memory during tests, and use persistent media 
to read input and write output data (outside of timing windows). 

 The SUT Provider choses whether to run the Sumaco or Tacana suite. 
 A SUT is allowed to host any Number of Model Instances (NMI). A single Driver instance can control all 

Model instances or each Model Instance can have its own Driver. For a given Workload, all Driver 
instances must use the same code. 

 A SUT provider is free to test any NMI values it believes demonstrate the SUT’s range of capability, is 
free to use different NMI ranges for each Model and is free to use different configurations for each 
Workload, subject to the requirement that the Model precision must be the same for all Workloads. 

 The SUT provider is free to optimize a SUT for a given set of goals, such as demonstrating minimum 
latency or revealing the throughput and latency tradeoffs for multiple Workloads. 

 The SUT provider is free to test with whatever Model precision they wish. However, different precisions 
entail different amounts of work for the SUT. Therefore, we group SUTs into “weight classes” when 
comparing their performance or efficiency. These classes are based on the Error they exhibit when 
tested (allowing some wiggle room for numerical variation and randomness). 

Interpreting and comparing results 
STAC-ML Markets (Inference) is a suite of benchmarks. The tables and charts in this report identify each 
benchmark unambiguously, in a way similar to this:  
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In charts, the ID is sometimes decomposed, with part of it in the chart title or labels. Most benchmarks in this 
report include a field for the Number of Model Instances, which is sometimes shown as a parameter [NMI] in 
tables. Each individual STAC Benchmark specification has its own version number. Versioning individual specs 
enables the reader to compare a discrete result from this SUT to the corresponding result from another SUT. 
When making comparisons, be sure that the identifiers match exactly, including the benchmark suite. Otherwise, 
the benchmark results cannot be fairly compared.   
 
For one SUT to claim superior latency, throughput, or efficiency over another, the ratio of their Error to that of 
the other SUT must be less than three. Superiority claims are not transitive. It is possible for SUT A to be superior 
to SUT B, SUT B to be superior to SUT C, but SUT A and SUT C to be incomparable in terms of Error.   

 

Specification particulars 

Version 
These benchmark specifications were developed by the STAC-ML Working Group of the STAC Benchmark 
Council. This project followed the STAC-ML Markets (Inference) benchmark specifications workbook Rev F. 
Qualified members of the STAC Benchmark Council can access these specifications and accompanying STAC 
Test Harness Software, as well as request vendor STAC Packs at www.STACresearch.com/ml. 

Note that the revision letter of the workbook is irrelevant to whether these results can be compared to other 
STAC-ML Markets (Inference) results. Only the ID for each benchmark (including its version number) can be 
used to determine results compatibility. See Section “Interpreting and comparing results”, above, for details. 

Limitations and clarifications 
 The SUT creates and records the timestamps using methods that meet the benchmark 

specifications. While a code review ensures that the Implementation adheres to the “Timestamps 
Method” policy in the Benchmark Specifications [1], STAC does not empirically verify that the SUT 
meets the accuracy requirements for timestamps. 

 In the Tacana suite, subsequent inferences share much of the data window, so the errors of 
inferences occurring close to each other may not be independent. The fewer inferences a SUT does 
during each run, the more likely it is for this to impact the reliability of error estimates. Sumaco 
inferences should be independent for practical purposes. 

 Since STAC does not limit the quantization techniques that may be employed by the SUT, the 
specifications do not define a pass/fail metric for correctness. STAC’s code review of the STAC Pack 
focuses on conformance to timing and reporting requirements, not on the correctness of the 
Inference Engine. Readers may evaluate the suitability of the SUT for their applications based on 
whether the reported errors are acceptable and consistent with the employed quantization 

MetricModel
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Root ID
Number of

Model Instances
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techniques. The specifications base the Error metric on absolute error, but trained production 
models may use other error metrics. 

 The spirit of the specifications is that the Null Model associated with each LSTM Model should be 
configured and run exactly as the LSTM Model. Due to differences in Model structure, complex 
quantization schemes may not be applied equivalently to the two models, so their error behaviors 
may diverge significantly in this case. 

 Each Workload runs for a fixed amount of time. This time should be long enough to activate any 
thermal effects on performance and efficiency (e.g., increased leakage, thermal throttling, high fan 
power, etc.), However, longer run times might not achieve the same efficiency. 

 The latency is not guaranteed to stay the same for lower throughputs. 

 

Results Consistency 
The STAC-ML Test Harness checks the consistency of inference results across runs, Model Instances, and 
NMI. Consistency is defined as producing bit-identical results from all inference requests given bit-identical input 
data sets. Inconsistent results due to the use of non-deterministic inference algorithms are allowed but must be 
explained. 
 
This SUT demonstrated no inconsistencies. 
 
Detailed results of consistency checks are contained in the Quality Notebook [5]. 

Results Introduction 
The remainder of this report summarizes the performance, quality, and efficiency results of the SUT. Qualified 
members of the STAC Benchmark Council have access to iPython notebooks [3, 4, 5] with more detailed 
analysis of these test results. Please contact info@STACresearch.com for information on how to obtain access 
to these results. 
 
Each report section summarizes the results for one of the three LSTM Models. The structure of each section 
follows the structure below. 
 
 

Important notes about NMI 
 
The SUT Provider chose the Number of Model Instances (NMI) to test for each Model, and 
how to optimize for that NMI. These scaling points may not be the same across Models but 
are required to be the same between a Model and its equivalent Null Model. Note that for a 
given Model, only one configuration for each NMI has been tested. The fact that the same NMI 
was tested for two Models does not necessarily imply an analogous configuration of the SUT 
for the two Models at that NMI. 
 
Visualizations of metrics versus NMI are often presented as bar charts and never presented 
as line charts. This is to avoid suggesting that the metrics should trend in a certain way as the 
NMI changes. This is especially relevant for SUTs that may mix latency-optimized and 
throughput-optimized configurations in the same test sequence. 

Performance and Quality Results 
Performance and Quality Summary 
 
Total Throughput and worst-case Instance Throughput are reported for each Workload. Latency statistics 
for a given Workload describe the results from all Model Instances and all test runs and are reported in 
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milliseconds. The table header includes the value of the quality (error) benchmark. Competitive 
comparisons of this SUT to another SUT are only allowed if the other SUT meets the indicated quality 
standard. 
 

Detailed analysis of the SUT’s error for each NMI, the Model overall, and its associated Null 
Model is available in the Quality Notebook [5].) 

 
Throughput Bar Charts 
 
These bar charts illustrate Total Throughput and worst-case Instance Throughput for each NMI. 
 
Latency Plots 
 
These plots illustrate the latency distribution for each NMI. The y-axis uses a logarithmic scale to improve 
visualization across Workloads and latency ranges. The x-axis is annotated with the Total Throughput and worst-
case Instance Throughput of each Workload. 
 

Additional latency analysis such as histograms, outlier analysis, and time plots for each run 
are available in the Performance Notebook [3]. The notebook also compares selected latency 
metrics of the LSTM Models to their associated Null Models, which sheds light on the SUT’s 
inference overhead, such as the time to transfer data to an accelerator. 

 

EƯiciency Results 
 
Efficiency Summary 
 
Efficiency results are reported for each Workload. The Workload Power is the average power consumed during 
all Inferring Periods. The Energy Efficiency Benchmark is Total Throughput / Workload Power. Instance Power 
(Workload Power / NMI) is also reported for context. 
 
Effective Volume is the amount of data center space that the SUT renders unavailable for other resources of the 
same vendor architecture and is constant for all NMI. The Space Efficiency Benchmark is Total Throughput / 
Effective Volume. Instance Volume (Effective Volume / NMI) is also reported for context.  
 
Efficiency Bar Charts 
 
A pair of bar charts illustrate the Energy Efficiency and Space Efficiency for each NMI. 
 

Additional analysis of efficiency such as static and active idle power, and detailed power traces 
are available in the Efficiency Notebook [4]. 
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Results for Model LSTM_A 

Performance Results 

Performance Summary 
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Throughput Bar Charts 

 

 



S T A C  R E P O R T   
 

Copyright © 2025 STAC  

Latency Statistics 
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EƯiciency Results 

Efficiency Summary 
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Efficiency Bar Charts 
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Results for Model LSTM_B 

Performance Results 

Performance Summary 
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Throughput Bar Charts 
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Latency Statistics 
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EƯiciency Results 

Efficiency Summary 
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Efficiency Bar Charts 
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Results for Model LSTM_C 

Performance Results 

Performance Summary 
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Throughput Bar Charts 
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Latency Statistics 
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EƯiciency Results 

Efficiency Summary 
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