
S T A C R E P O R T

Copyright © 2025 STAC

STAC-ML™ Markets (Inference) Supermicro ARS-111GL-NHR with
NVIDIA GH200 Grace Hopper™ Superchip

NVIDIA ImplementaƟon OpƟmized for Latency using FP16 Precision

SUT ID: SMC250910

STAC-ML™ Markets (Inference) Benchmarks

Tacaná

Test date: 10th September 2025

Release: v1, 6th October 2025

These tests followed STAC benchmark specifications proposed or
approved by the STAC Benchmark Council (see
www.stacresearch.com). Be sure to check the version of any
specification used in a report. DiƯerent versions may not yield
results that can be compared to one another.

This document was prepared by the Securities Technology Analysis
Center (STAC®) at the request of Supermicro. This document is provided
for your internal use only and may not be redistributed, retransmitted,
or published in any form without the prior written consent of STAC.
“STAC” and all STAC names are registered trademarks or trademarks of
the Securities Technology Analysis Center LLC. All other trademarks in
this document belong to their respective owners.

 The test results contained in this report are made available for
informational purposes only. Neither STAC nor the vendor(s) supplying
the information in this report guarantee similar performance results. All
information contained herein is provided on an “AS IS” BASIS WITHOUT
WARRANTY OF ANY KIND. STAC explicitly disclaims any liability
whatsoever for any errors or otherwise.

Copyright @ 2025, STAC. "STAC" and all STAC names are trademarks or
registered trademarks of the Securities Technology Analysis Center,
LLC. Other company and product names are trademarks of their
respective Owners.

S T A C R E P O R T

Copyright © 2025 STAC

References .. 3

Summary .. 4

Vendor Commentary ... 8

The stack under test .. 8

Understanding this implementation of STAC-ML Markets (Inference) .. 8

Understanding the rest of the SUT .. 9

Project contributors and their roles .. 10

Contacts .. 10

Overview of the STAC-ML Markets (Inference) benchmark specifications ... 11

Business context .. 11

Scope .. 11

Benchmark construction .. 11

Metrics .. 14

SUT Flexibility ... 15

Interpreting and comparing results .. 15

Specification particulars ... 16

Version .. 16

Limitations and clarifications .. 16

Results Consistency ... 17

Results Introduction ... 17

Performance and Quality Results .. 17

EƯiciency Results ... 18

Results for Model LSTM_A ... 19

Performance Results .. 19

EƯiciency Results ... 22

Results for Model LSTM_B ... 24

Performance Results .. 24

EƯiciency Results ... 27

Results for Model LSTM_C ... 29

Performance Results .. 29

EƯiciency Results ... 32

S T A C R E P O R T

Copyright © 2025 STAC

References

The following materials are accessible by qualified members of the STAC Benchmark Community. Contact
info@STACresearch.com to request access.

[1] Specifications used for this benchmark: STAC-ML Markets (Inference) Benchmark Specifications, Rev F –

https://STACresearch.com/stac-ml-markets-inference-benchmark-specs-rev-f

[2] STAC Configuration Disclosure for this SUT*

[3] iPython Performance Notebook from this project (in HTML)*

[4] iPython Efficiency Notebook from this project (in HTML)*

[5] iPython Quality Notebook from this project (in HTML)*

* Available at https://stacresearch.com/SMC250910 (Same URL as this report)

S T A C R E P O R T

Copyright © 2025 STAC

Summary

STAC recently audited STAC-ML Markets (Inference) benchmark tests on a stack consisting of STAC-ML™
pack for CUDA and cuDNN running on an NVIDIA GH200 Grace Hopper Superchip with 96GiB HBM3 480GiB
LDDR5 memory connected with NVLINK C2C in a Supermicro SuperServer® ARS-111GL-NHR. This report
provides test results related to the performance, efficiency, and quality of the algorithms in the benchmark
implementation. It also describes the solution that was tested and salient aspects of the test project.

STAC-ML Markets (Inference) is the technology benchmark standard for solutions that may be used to run
inference on realtime market data. Designed by quants and technologists from some of the world's leading
financial firms, STAC-ML Markets (Inference) reports the performance, resource efficiency, and quality of any
technology stack capable of performing inference using the provided models. The specifications are agnostic to
the architectures of the stack under test (SUT), inference engine, and underlying precision of the computations.
This report highlights results from the sliding-window suite (code named Tacana). See the Overview later in this
report for more background.

Benchmarks that use realistic workloads to measure business-relevant dimensions of performance help firms
make sense of a wide variety of technology stacks. The STAC Benchmark Council1 has created and maintained
such benchmarks—STAC Benchmarks™— for over a decade for other business-critical analytic workloads such
as derivatives valuation, strategy backtesting, and enterprise tick analytics.2

These tests were performed using an NVIDIA-authored STAC Pack. The STAC Pack used comprises a custom
C++ driver compiled with gcc 11.4.0, the NVIDIA CUDA toolkit 12.0, and the NVIDIA CUDA Deep Neural Network
library (cuDNN) 9.10.2. For more information on the implementation and the system on which it was tested, see
Section 3.

In all, the STAC-ML Markets (Inference) specifications deliver scores of test results, which are detailed in this
report and accompanying notebooks. Supermicro and NVIDIA would like to point out the following:

Compared to a previous SUT submitted by Myrtle.ai (MRTL230426) on FPGAs, this SUT featuring an NVIDIA
GH200 Superchip in a Supermicro ARS-111GL-NHR server demonstrated the following:

 For LSTM_A (the smallest model) the 99p latency was between 7% and 20% lower
o 7% lower with 1 NMI (4.70μs vs. 5.07μs)
o 20% lower with 8 NMI (4.67μs vs 5.97μs)
o The 99p error benchmark was 8 times lower (0.00111 vs 0.00889)

 For LSTM_B (the medium model) the 99p latency was between 3% higher and 8% lower

o 3% higher with 1 NMI (7.10μs vs. 6.89μs)
o 8% lower with 4 NMI (7.10 μs vs 7.73μs)
o The 99p error benchmark was 12 times lower (0.00102 vs 0.0127)

 For LSTM_C (the largest model) with 1 NMI:

o The 99p latency was 49% lower (15.8μs vs. 31.0μs)
o The throughput was 15% higher (3,910 vs. 3.387)
o The 99p error benchmark was 13 times lower (0.00172 vs 0.0237)
o The energy efficiency was 44% higher (8,312 vs 5,785)

 The largest ratio of maximum to median latency is 9.65 ~ 38.3μs / 3.97μs (occurs at LSTM_A with

NMI=8). The smallest ratio of maximum to median latency is 2.16 ~ 32.2μs / 14.9μs (occurs at
LSTM_C with NMI=1).

1 www.STACresearch.com/council
2 See www.STACresearch.com/a2, www.STACresearch.com/a3, and www.STACresearch.com/m3, respectively.

S T A C R E P O R T

Copyright © 2025 STAC

LSTM_A Report Card

S T A C R E P O R T

Copyright © 2025 STAC

LSTM_B Report Card

S T A C R E P O R T

Copyright © 2025 STAC

LSTM_C Report Card

S T A C R E P O R T

Copyright © 2025 STAC

Vendor Commentary

Supermicro provided the following comments:

The audit was performed on a server equipped with a single GPU, highlighting the solution's efficiency in
environments with strict space and energy constraints, such as market colocation. Our results demonstrate that
multiple independent instances can be executed simultaneously on a single GPU by utilizing green contexts and
concurrent CUDA streams.

We would like to highlight that this stack achieves not only comparable (LSTM B) or lower latencies than all
previous submissions —including those using FPGAs—at the 99th percentile of the measured distribution but
also avoids extreme outliers, i.e., the maximum latency is less than 10 times the median latency for all workloads.
Consequently, the most extreme latency measurements are near the median, making them predictable. In
addition, our solution consistently demonstrates superior accuracy.

The stack under test
Any stack under test SUT to be assessed by STAC-ML Markets (Inference) benchmarks has two layers:

 An implementation of the benchmarks. This is software and/or firmware that implements the
Workloads and other logic required by the benchmark specifications. For example, this could be a
software program written in C++, VHDL code for an FPGA, an Inference Engine, scripts, etc. It is
delivered with documentation in a "STAC Pack".

 Other hardware and software required to carry out the operations defined by the benchmark
specification, including processors, accelerators, memory, operating system, compiler, math
libraries, etc.

The next two sections discuss each layer in turn.

Understanding this implementation of STAC-ML Markets (Inference)
This project used a STAC-ML Markets (Inference) Implementation developed by NVDIA, called the STAC-ML
Markets (Inference) Pack for CUDA and cuDNN. The source code is available to qualified STAC subscribers.
NVIDIA provided the following description:

This implementation of STAC-ML showcases the NVIDIA H200 GPU and Grace CPU, our flagship data center
product for AI workloads. The code was developed in C++20 code. The implementation uses some of the highly
optimized libraries delivered with CUDA:

 cuBLAS: the GPU-enabled implementation of the linear algebra package BLAS
 CUDA Streams: enables running multiple kernels in parallel on a single device
 CUDA Graphs: removes kernel launch overhead
 CUDA Green contexts: allow to serve multiple instances with consistent latencies

The benchmark consists of two distinct phases:

 Precomputation:
This stage produces the necessary inputs for the final time step of the sliding window LSTM. Notably,
this precomputation phase is excluded from all latency timing measurements. But not from the
throughput measurements.

 Inference:
In this phase, the last LSTM time step is processed using new input data.

Inference Implementation

S T A C R E P O R T

Copyright © 2025 STAC

Inference utilizes a persistent kernel approach, ensuring the kernel remains active for the entire duration of the
application. This persistence enhances performance by loading weights into shared memory and registers just
once during kernel initialization.

 Timing is coordinated by CPU, as specified by the benchmark.

 Synchronization between host and device employs standard CPU/GPU synchronization primitives.

 The host signals the device when new input arrives in host memory and simultaneously starts the timer.

 The kernel polls for this signal, then reads the input and initiates computation.
 The computed floating-point output also acts as the host's signal to stop the timer.

Maximizing Throughput:

To further boost throughput when handling multiple NMIs, each persistent kernel is launched within its own green
context. Every green context is managed by an independent CPU thread.

Understanding the rest of the SUT
The implementation relied on the following other key components in this project:

 NVIDIA CUDA Toolkit 12.9
 NVIDIA CUDA Deep Neural Network library (cuDNN) 9.10.2
 Supermicro ARS-111GL-NHR

 NVIDIA 72-core NVIDIA Grace CPU on GH200 Grace Hopper™ Superchip @ 3.1Ghz
 Integrated H100 GPU using NVLink® Chip-2-Chip (C2C) 900GiB/s interlink
 480GiB of ECC LPDDR5X memory @ 6400Mhz
 96GiB of ECC HBM3 memory

 Ubuntu 22.04.5 LTS Server with HWE kernel

A detailed STAC Configuration Disclosure [2] for the SUT in this report is available to qualified STAC subscribers.
That document provides the exact product version numbers, detailed tuning options, and other important
information. Additional configuration details such as a sosreport may also be available, depending on the SUT
platform.

The server in the SUT was configured to mitigate the full range Spectre/Meltdown threats.

Supermicro provided the following information about its products used in this SUT:

The ARS-111GL-NHR (https://www.supermicro.com/en/products/system/gpu/1u/ars-111gl-nhr) is a
powerful 1U GPU system specifically engineered for demanding AI workloads, which makes it highly
relevant for the STAC-ML Markets Inference benchmark, focusing on high-frequency, low-latency
financial inference. Its core capability lies in the integrated NVIDIA GH200 Grace Hopper Superchip,
which combines the NVIDIA Grace CPU and a high-performance NVIDIA Hopper GPU with 900 GB/s
NVLink Chip-2-Chip (C2C) interconnect.

This single-node, high-density architecture is crucial for the Tacana suite's requirement for extremely
low and predictable 99th-percentile latency in continuous, sliding-window inference on time-series
data.

Features supporting this include up to 576 GB of coherent memory (including 96 GB HBM3 for the
GPU) for handling large models like those used in LLMs, and PCIe 5.0 x16 slots to support high-speed
networking like NVIDIA BlueField-3 or ConnectX-7 DPUs, which are vital for ultra-low-latency market
data processing and feed handling—key aspects of optimizing for STAC-ML inference benchmarks.

S T A C R E P O R T

Copyright © 2025 STAC

Supermicro has a long-standing history of providing high-performance, purpose-built server solutions
for AI and machine learning workloads, including those in the financial sector. Our expertise is reflected
in our robust, application-optimized systems that are designed to deliver exceptional performance on
industry benchmarks like the STAC-ML Markets Inference benchmarks.

NVIDIA provided the following information about its products used in this SUT:

The NVIDIA GH200 Grace Hopper Superchip broadens the robust 64-bit Arm processor ecosystem,
supporting a wide range of containers, application binaries, and operating systems—these run
seamlessly on Grace Hopper without the need for modification. The Superchip is fully compatible with
the NVIDIA software suite, including NVIDIA HPC and AI platforms. The advanced Hopper architecture,
offering a theoretical peak of 67 TFlops for single-precision and 34 TFlops for double-precision
operations with its 16,896 CUDA cores. It also includes 528 fourth-generation TensorCore modules,
delivering up to 990 TFlops for FP16/BF16 computations. Employing CoWoS HBM3 technology, the
Hopper GPU integrates compute and memory within a single silicon package, which results in
approximately double the memory bandwidth compared to the Ampere A100 generation. Its distributed
shared memory feature minimizes kernel latency by enabling direct SM-to-SM communication for loads,
stores, and atomics across multiple SM shared memory blocks. Equipped with 96 GiB CoWoS HBM3,
the GPU achieves a maximum theoretical memory bandwidth of 4 TB/s, and interfaces with the Grace
CPU at up to 900 GB/s via memory-coherent NVIDIA C2C NVLink.

Project contributors and their roles

The following firms contributed to this project:

 Supermicro
 NVIDIA
 STAC

The Project Participants had the following responsibilities:

 NVIDIA wrote the STAC-ML Pack in accordance with the STAC-ML Markets (Inference)
benchmark specifications; provided the SUT server, the GPU, test lab, and power- and
temperature-monitoring equipment; configured the hardware and software.

 Supermicro provided server specifications and sponsored the report.

 STAC edited the final STAC Report and STAC Configuration Disclosure, based on information
provided by the sponsor(s).

Contacts


 Supermicro: financialservices@supermicro.com

 NVIDIA: nmarkovskiy@NVIDIA.com

 STAC: info@STACresearch.com

S T A C R E P O R T

Copyright © 2025 STAC

Overview of the STAC-ML Markets (Inference) benchmark
specifications

Business context
Financial firms sometimes develop neural network models to analyze time series of market data. They then use
those models to run inference on incoming realtime market data. Such inference is latency sensitive and usually
occurs in datacenters co-located with exchanges.

There are several use cases for co-located inference, such as valuations used in high frequency market making,
price predictions for short- and medium-term position taking, creating price bands for pre- and post-trade risk
checks, automated hedging and position reduction, and brokers generating fair-value prices that are used to
make firm prices to their customers.

The benchmarks in this project are the first set of STAC-ML Markets benchmarks. They address a use case in
which a solution performs inference using one or more instances of the same model, each operating on different
streams of input data. For example, a firm might apply a single equities prediction model to multiple portfolios
with different constituent equities.

Scope
For a given SUT, the objective is to measure the upper-bound performance of inference only. While end-to-end
inference performance in the real world also depends on tasks such as data ingest, parsing, feature creation,
and sometimes online retraining, the working group responsible for developing the benchmark decided that it
would be most helpful to study the performance of these tasks separately.3

Some use cases call for minimum latency, while others call for maximum throughput or power/space-efficiency
at an acceptable latency. A single solution may be capable of providing different tradeoffs depending on its
configuration. For a given configuration, the goal of the benchmarks is to measure the upper-bound of
performance and efficiency, thus elucidating the theoretical limits that a solution involving more functions could
provide in the real world.

In order to satisfy the requirement to measure upper-bound performance, the workload is consumption driven.
That is, rather than being forced to react to an asynchronous event stream (as in other realtime STAC
Benchmarks), the SUT accepts each new input set as it completes the last. This eliminates queuing of inbound
data from the latency measurement.

Benchmark construction
Models

For this use case, the STAC-ML Working Group chose a set of Stacked LSTM models that take a window
consisting of N timesteps of M features and predict a single value per window. Similar to algorithms in other
STAC Benchmarks, the models do not represent a production-ready strategy but were chosen by the Working
Group because they induce workloads similar to those of real-world models.

The current benchmark suite includes three LSTM Models, which are variations of the Stacked LSTM mentioned
above, each with a unique combination of features, timesteps, layers, and units/layer:

 Number of timesteps: The amount of history affects the amount of data transferred to the inference
engine. Since LSTM inference is sequential, the number of timesteps has a direct impact on inference

3 The performance characteristics of some tasks, such as low-latency market data parsing, are already well understood.

See www.STACresearch.com/m1 for benchmarks the STAC Benchmark Council established in this domain long ago.

S T A C R E P O R T

Copyright © 2025 STAC

latency.

 Number of features: This number also affects the amount of data transferred and has some effect on
model size. However, for LSTM models, the number of features only affects the complexity of the
initial LSTM layer. Increasing the number of features and the complexity of the model (as measured by
the following two metrics) would likely go hand-in-hand in a real-world application.

 Layers: The number of LSTM layers directly impacts the model size and given the sequential
evaluation of layers, has an equally direct impact on inference latency.

 Units/Layer: The number of units per layer also directly impacts model size, even though an
implementation can parallelize the computation of a layer.

The three models are LSTM_A, LSTM_B, and LSTM_C. Relative to LSTM_A, LSTM_B is roughly 6 times the
size and LSTM_C is roughly 2 orders of magnitude bigger. As the size of the model grows, features,
timesteps, layers and units/layer either grow or remain the same.

For each LSTM Model there is a corresponding LSTM Null Model designed to elucidate the platform and
communication overhead of the system. An LSTM Null Model performs a bare minimum of computation. Each
LSTM Null Model requires the same number and shape of inputs as its corresponding LSTM Model and produces
the same number and shape of outputs.

Understanding the STAC-ML Markets (Inference) Benchmark Suites

The STAC-ML Markets (Inference) Benchmark Specifications comprise 2 separate suites: Sumaco and Tacana.
These two suites are identical in many respects. The suites differ primarily in how implementations handle data
and the rules regarding the re-use of computations. Data generation, benchmark models, and performance,
quality, and efficiency metrics are identical between the two suites.

In the benchmark specifications, the SUT performs inference on rectangular (Timesteps x Features) arrays
(windows) of data. In the Sumaco suite, each full window of contiguous data is selected randomly from a larger
data array and transmitted in whole to the Inference Engine. This suite models a use case where an external
event invokes an inference based on the most recent history prior to the event. The Sumaco suite does not allow
any pre-computation or reuse of computations from window to window. This inference approach is typically
supported in generic Inference Engines (e.g., ONNX, TensorFlow) for evaluating the LSTM models that the
benchmark specifications define.

In the Tacana suite, inference is performed on a sliding window. Each inference operation inserts the newest
randomly-selected (1 x Features) vector into the window while removing the least recent (1 x Features) vector
from the window prior to inference on the entire window. This suite models a use case where inference is
performed on every tick or bar of market data using a fixed-length history of the most recent input data. In the
Tacana suite, the SUT may choose to only transmit the most recent Timestep of data to the Inference Engine–
reducing data overhead for SUTs based on external accelerators—and manage the sliding windows in the
Inference Engine. The SUT can also re-use computations based on any of the data that remains in the window.
SUTs that implement the Tacana suite will likely use custom Inference Engines.

Workloads

A Workload is the combination of a Model and Number of Model Instances (NMI) simultaneously performing
inference. While the benchmark requires every SUT to execute each of the Models, the SUT provider chooses
the NMI.

SUT providers will often benchmark multiple Workloads for each Model to demonstrate interesting tradeoffs in
latency, throughput, and efficiency. For example, CPUs may be able to reduce latency by parallelizing small
NMI, or FPGAs may move from loop-unrolled to iterative designs as the NMI increases.

Test framework

S T A C R E P O R T

Copyright © 2025 STAC

At a high level, generating STAC-ML Markets (Inference) benchmark results requires four things:

1. An Implementation. This is the logic that carries out the algorithms and measurements specified by
STAC-ML Markets (Inference). It is described in Section 3.1.

2. Something on which to run the Implementation (whatever hardware and software is required). It is
described in Section 3.2.

3. The STAC-ML Markets (Inference) Orchestration Scripts. These scripts direct the Implementation
through all of the performance and quality test sequences required by the benchmark specifications,
telling it at each step what algorithm to run, what problem size to use, etc.

4. A general-purpose processor on which to run the Orchestration Scripts.

#1 and #2, taken together, form the SUT, as shown in Figure 1. The general-purpose processor in #4 may or
may not be part of the SUT. The SUT may also host the Orchestration Scripts (which occupy a tiny amount of
memory), or those scripts can run remotely.

Figure 1 – High-level benchmark diagram

The Driver is the application that drives the benchmark operations. The Driver runs on a general-purpose CPU.
The Inference Engine implementation may be completely contained within or linked with the Driver or distributed
across other processes on the host CPU or accelerators. If the SUT uses one or more accelerators, the Driver
calls out to the accelerator(s).

The rest of the Driver is benchmark-specific code written by the Implementation Provider that takes instruction
from the Orchestration Scripts. STAC checks Drivers for conformance to specifications through code inspection
and “black box” validation.

S T A C R E P O R T

Copyright © 2025 STAC

During test runs, the Driver provides a unique stream of features to each Model Instance (selected from the
same in-memory store of input features). An Implementation Provider may implement a Model Instance in one
of two ways: 1) as a single copy of the defined model, with inferences occurring serially, or 2) as multiple copies
of the defined model, inferring in parallel or in a pipelined fashion. In either mode inferences may be processed
singly or in batches. For a given workload on a given SUT, all Model Instances have the same construction.

The Driver locates either a full window of data (Sumaco) or a single timestep of data (Tacana) for each Model
Instance, using a random selection scheme. As soon as it locates the data, the Driver obtains a timestamp
(tsupply), which it stores in memory.

The Driver then does whatever is necessary to enable the Inference Engine to operate on the full data window
(Sumaco) or sliding data window formed by the incoming timestep (Tacana). The Inference Engine always
requires a complete window of features to perform inference. In the Tacana suite the Driver author is free to
transfer the required data in whatever way is most efficient for the architecture (e.g., transfer a given timestep
only once vs. transfer it multiple times as part of each window that includes it).

Once the Inference Engine returns the Inference Result, the Driver ensures proper ordering (which may require
some work, as multiple inferences may be in-flight simultaneously), then obtains a second timestamp (tresult),
which it stores in memory.

After a test run, the Driver persists the inferences and timestamps to a file for analysis.

Metrics
For a given SUT, the objective is to measure inference in isolation. End-to-end inference performance in the real
world also depends on tasks such as data ingest, parsing, feature creation, and sometimes online retraining, but
the Working Group believed it is most helpful to study those tasks separately.

The performance metrics of interest are latency and throughput of inference when various numbers of Model
Instances are running on the SUT. As resources in co-located datacenters come at a premium, power and space
efficiency metrics are also important. The quality of inference results is also of key interest.

Latency, throughput, and efficiency are only reported for the Inferring Period, which is a fixed amount of time in
a test run following a vendor-specified warm-up time.

Latency

Inference latency is the elapsed time to produce a single inference result (tresult - tsupply). Note that this latency
definition does not include the time to select the inference data or store the results in memory, which is
considered external to the work to be measured. However, latency does include the time it takes to transfer data
to and from the inference engine, including transfer time to any accelerators the SUT uses. Also, since inference
results are required to be returned in the order of the triggering timestep, latency for parallel implementations
may include waiting for the inference results of previously provided timesteps. Latency is only reported for
inferences that take place after a SUT-specfic warmup time is complete.

Software timestamps have two potential sources of latency-measurement error:

1) Host clock error. The frequency error and timer resolution of the host clock must combine to less than the
least significant digit reported for latency measurements. The Configuration Disclosure [2] provides details on
the timer call used in the source code and the underlying OS timer used for latency measurements.

2) Application-level error. Often the largest errors in software latency measurement are due to delays between
the moment the application code asks for a timestamp and the moment the timestamp is assigned to an event.
These range from small delays due to the timestamping instructions and much larger delays caused by task
switching. However, in STAC-ML Markets (Inference), the call to acquire the timestamp for tsupply must be
completed before any of the measured operation begins, which means that any timestamp-assignment delays
can only increase reported latency. Likewise, the call to acquire the timestamp for tresult cannot begin until the

S T A C R E P O R T

Copyright © 2025 STAC

entirety of the measured operation is completed, which means that any delays between assignment and return
of the timestamp also serve to increase reported latency. The positioning of the timestamp calls is verified by
code review. In other words, the reported latencies are conservative measurements.

Throughput

Throughput is the number of inferences returned during the Inferring Period divided by the duration of the
Inferring Period, reported as inferences per second. Two throughput metrics are of interest:

 Total Throughput is the throughput of the entire SUT, averaged across all test runs.
 For a given Workload, the worst-case Instance Throughput is the lowest Throughput exhibited by any

instance in any test run.

Error

The measure of error is the absolute difference between the SUT’s inference values and the corresponding
inference values obtained by the Quality Reference implementation. The test harness reports statistics on these
measurements across all Model Instances and test runs for a given Workload to derive a single Error metric.
The specifications do not impose a minimum standard for Error. See “SUT Flexibility”, below, for details.

Efficiency

For SUTs not hosted in a public cloud, there are two types of efficiency metrics: energy and space. The
benchmark defines ways to measure the energy and space consumed by the SUT, as well as metrics that relate
that consumption to the total throughput (i.e., the SUT's efficiency). For SUTs hosted in a public cloud, the dollar
cost of the resources in the SUT during a test replaces energy and space.

SUT Flexibility
STAC-ML Markets (Inference) provides the SUT provider with great latitude in choosing what to test:

 The specs place no constraints on the architecture of the SUT, except that it must be controllable by the
Orchestration Scripts, maintain the inputs and outputs in memory during tests, and use persistent media
to read input and write output data (outside of timing windows).

 The SUT Provider choses whether to run the Sumaco or Tacana suite.
 A SUT is allowed to host any Number of Model Instances (NMI). A single Driver instance can control all

Model instances or each Model Instance can have its own Driver. For a given Workload, all Driver
instances must use the same code.

 A SUT provider is free to test any NMI values it believes demonstrate the SUT’s range of capability, is
free to use different NMI ranges for each Model and is free to use different configurations for each
Workload, subject to the requirement that the Model precision must be the same for all Workloads.

 The SUT provider is free to optimize a SUT for a given set of goals, such as demonstrating minimum
latency or revealing the throughput and latency tradeoffs for multiple Workloads.

 The SUT provider is free to test with whatever Model precision they wish. However, different precisions
entail different amounts of work for the SUT. Therefore, we group SUTs into “weight classes” when
comparing their performance or efficiency. These classes are based on the Error they exhibit when
tested (allowing some wiggle room for numerical variation and randomness).

Interpreting and comparing results
STAC-ML Markets (Inference) is a suite of benchmarks. The tables and charts in this report identify each
benchmark unambiguously, in a way similar to this:

S T A C R E P O R T

Copyright © 2025 STAC

In charts, the ID is sometimes decomposed, with part of it in the chart title or labels. Most benchmarks in this
report include a field for the Number of Model Instances, which is sometimes shown as a parameter [NMI] in
tables. Each individual STAC Benchmark specification has its own version number. Versioning individual specs
enables the reader to compare a discrete result from this SUT to the corresponding result from another SUT.
When making comparisons, be sure that the identifiers match exactly, including the benchmark suite. Otherwise,
the benchmark results cannot be fairly compared.

For one SUT to claim superior latency, throughput, or efficiency over another, the ratio of their Error to that of
the other SUT must be less than three. Superiority claims are not transitive. It is possible for SUT A to be superior
to SUT B, SUT B to be superior to SUT C, but SUT A and SUT C to be incomparable in terms of Error.

Specification particulars

Version
These benchmark specifications were developed by the STAC-ML Working Group of the STAC Benchmark
Council. This project followed the STAC-ML Markets (Inference) benchmark specifications workbook Rev F.
Qualified members of the STAC Benchmark Council can access these specifications and accompanying STAC
Test Harness Software, as well as request vendor STAC Packs at www.STACresearch.com/ml.

Note that the revision letter of the workbook is irrelevant to whether these results can be compared to other
STAC-ML Markets (Inference) results. Only the ID for each benchmark (including its version number) can be
used to determine results compatibility. See Section “Interpreting and comparing results”, above, for details.

Limitations and clarifications
 The SUT creates and records the timestamps using methods that meet the benchmark

specifications. While a code review ensures that the Implementation adheres to the “Timestamps
Method” policy in the Benchmark Specifications [1], STAC does not empirically verify that the SUT
meets the accuracy requirements for timestamps.

 In the Tacana suite, subsequent inferences share much of the data window, so the errors of
inferences occurring close to each other may not be independent. The fewer inferences a SUT does
during each run, the more likely it is for this to impact the reliability of error estimates. Sumaco
inferences should be independent for practical purposes.

 Since STAC does not limit the quantization techniques that may be employed by the SUT, the
specifications do not define a pass/fail metric for correctness. STAC’s code review of the STAC Pack
focuses on conformance to timing and reporting requirements, not on the correctness of the
Inference Engine. Readers may evaluate the suitability of the SUT for their applications based on
whether the reported errors are acceptable and consistent with the employed quantization

MetricModel

Version

STAC-ML

Root ID
Number of

Model Instances

v1TIMEMarkets. . LSTM_AInf . 48. . ..

Suite

S

S T A C R E P O R T

Copyright © 2025 STAC

techniques. The specifications base the Error metric on absolute error, but trained production
models may use other error metrics.

 The spirit of the specifications is that the Null Model associated with each LSTM Model should be
configured and run exactly as the LSTM Model. Due to differences in Model structure, complex
quantization schemes may not be applied equivalently to the two models, so their error behaviors
may diverge significantly in this case.

 Each Workload runs for a fixed amount of time. This time should be long enough to activate any
thermal effects on performance and efficiency (e.g., increased leakage, thermal throttling, high fan
power, etc.), However, longer run times might not achieve the same efficiency.

 The latency is not guaranteed to stay the same for lower throughputs.

Results Consistency
The STAC-ML Test Harness checks the consistency of inference results across runs, Model Instances, and
NMI. Consistency is defined as producing bit-identical results from all inference requests given bit-identical input
data sets. Inconsistent results due to the use of non-deterministic inference algorithms are allowed but must be
explained.

This SUT demonstrated no inconsistencies.

Detailed results of consistency checks are contained in the Quality Notebook [5].

Results Introduction
The remainder of this report summarizes the performance, quality, and efficiency results of the SUT. Qualified
members of the STAC Benchmark Council have access to iPython notebooks [3, 4, 5] with more detailed
analysis of these test results. Please contact info@STACresearch.com for information on how to obtain access
to these results.

Each report section summarizes the results for one of the three LSTM Models. The structure of each section
follows the structure below.

Important notes about NMI

The SUT Provider chose the Number of Model Instances (NMI) to test for each Model, and
how to optimize for that NMI. These scaling points may not be the same across Models but
are required to be the same between a Model and its equivalent Null Model. Note that for a
given Model, only one configuration for each NMI has been tested. The fact that the same NMI
was tested for two Models does not necessarily imply an analogous configuration of the SUT
for the two Models at that NMI.

Visualizations of metrics versus NMI are often presented as bar charts and never presented
as line charts. This is to avoid suggesting that the metrics should trend in a certain way as the
NMI changes. This is especially relevant for SUTs that may mix latency-optimized and
throughput-optimized configurations in the same test sequence.

Performance and Quality Results
Performance and Quality Summary

Total Throughput and worst-case Instance Throughput are reported for each Workload. Latency statistics
for a given Workload describe the results from all Model Instances and all test runs and are reported in

S T A C R E P O R T

Copyright © 2025 STAC

milliseconds. The table header includes the value of the quality (error) benchmark. Competitive
comparisons of this SUT to another SUT are only allowed if the other SUT meets the indicated quality
standard.

Detailed analysis of the SUT’s error for each NMI, the Model overall, and its associated Null
Model is available in the Quality Notebook [5].)

Throughput Bar Charts

These bar charts illustrate Total Throughput and worst-case Instance Throughput for each NMI.

Latency Plots

These plots illustrate the latency distribution for each NMI. The y-axis uses a logarithmic scale to improve
visualization across Workloads and latency ranges. The x-axis is annotated with the Total Throughput and worst-
case Instance Throughput of each Workload.

Additional latency analysis such as histograms, outlier analysis, and time plots for each run
are available in the Performance Notebook [3]. The notebook also compares selected latency
metrics of the LSTM Models to their associated Null Models, which sheds light on the SUT’s
inference overhead, such as the time to transfer data to an accelerator.

EƯiciency Results

Efficiency Summary

Efficiency results are reported for each Workload. The Workload Power is the average power consumed during
all Inferring Periods. The Energy Efficiency Benchmark is Total Throughput / Workload Power. Instance Power
(Workload Power / NMI) is also reported for context.

Effective Volume is the amount of data center space that the SUT renders unavailable for other resources of the
same vendor architecture and is constant for all NMI. The Space Efficiency Benchmark is Total Throughput /
Effective Volume. Instance Volume (Effective Volume / NMI) is also reported for context.

Efficiency Bar Charts

A pair of bar charts illustrate the Energy Efficiency and Space Efficiency for each NMI.

Additional analysis of efficiency such as static and active idle power, and detailed power traces
are available in the Efficiency Notebook [4].

S T A C R E P O R T

Copyright © 2025 STAC

Results for Model LSTM_A

Performance Results

Performance Summary

S T A C R E P O R T

Copyright © 2025 STAC

Throughput Bar Charts

S T A C R E P O R T

Copyright © 2025 STAC

Latency Statistics

S T A C R E P O R T

Copyright © 2025 STAC

EƯiciency Results

Efficiency Summary

S T A C R E P O R T

Copyright © 2025 STAC

Efficiency Bar Charts

S T A C R E P O R T

Copyright © 2025 STAC

Results for Model LSTM_B

Performance Results

Performance Summary

S T A C R E P O R T

Copyright © 2025 STAC

Throughput Bar Charts

S T A C R E P O R T

Copyright © 2025 STAC

Latency Statistics

S T A C R E P O R T

Copyright © 2025 STAC

EƯiciency Results

Efficiency Summary

S T A C R E P O R T

Copyright © 2025 STAC

Efficiency Bar Charts

S T A C R E P O R T

Copyright © 2025 STAC

Results for Model LSTM_C

Performance Results

Performance Summary

S T A C R E P O R T

Copyright © 2025 STAC

Throughput Bar Charts

S T A C R E P O R T

Copyright © 2025 STAC

Latency Statistics

S T A C R E P O R T

Copyright © 2025 STAC

EƯiciency Results

Efficiency Summary

S T A C R E P O R T

Copyright © 2025 STAC

Efficiency Bar Charts

